Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 20 (2022)  /  Artículo
ARTÍCULO
TITULO

Free Vibration Analysis of Thick Annular Functionally Graded Plate Integrated with Piezo-Magneto-Electro-Elastic Layers in a Hygrothermal Environment

Faraz Kiarasi    
Masoud Babaei    
Kamran Asemi    
Rossana Dimitri and Francesco Tornabene    

Resumen

The present work aims at investigating the hygrothermal effect on the natural frequencies of functionally graded (FG) annular plates integrated with piezo-magneto-electro-elastic layers resting on a Pasternak elastic foundation. The formulation is based on a layer-wise (LW) theory, where the Hamiltonian principle is used to obtain the governing equation of the problem involving temperature- and moisture-dependent material properties. The differential quadrature method (DQM) is applied here as a numerical strategy to solve the governing equations for different boundary conditions. The material properties of FG annular plates are varied along the thickness based on a power law function. The accuracy of the proposed method is, first, validated for a limit-case example. A sensitivity study of the free vibration response is, thus, performed for different input parameters, such as temperature and moisture variations, elastic foundation, boundary conditions, electric and magnetic potential of piezo-magneto-electro-elastic layers and geometrical ratios, with useful insights from a design standpoint.

 Artículos similares

       
 
Li Ruan, Dingyong Yu, Jian Bao and Jinxin Zhao    
In this study, the effect of additional positions of rigid splitter plates on the response characteristics of tandem cylinders at a Reynolds number of 150 and a fixed distance ratio of 5.0 was numerically investigated via the computational fluid dynamics... ver más

 
Carlos Enrique Valencia Murillo, Miguel Ernesto Gutierrez Rivera, Nicolas Flores Samano and Luis David Celaya Garcia    
This contribution presents a finite element shell model capable of performing linear vibration analyses of shell-type structures made of functionally graded material (FGM). The model is based on the seven-parameter spectral/hp finite element formulation,... ver más
Revista: Applied Sciences

 
Jae-Hyeon Park, Sung-Woo Park, Jong-Pil Kim and Hyun-Ung Oh    
A novel passive vibration-damping device is proposed and investigated for a large deployable solar array. One strategy for achieving high damping in a solar panel is using a yoke structure comprising a hyperelastic shape memory alloy and multiple viscous... ver más
Revista: Aerospace

 
Xing Zou, Botao Xie, Zhipeng Zang, Enbang Chen and Jing Hou    
Sand waves are commonly formed on the sandy seabed of the continental shelf and characterized by their regular wave-like shape. When a submarine pipeline is laid on this type of seabed, it often experiences free spans due to the unevenness of the seabed.... ver más

 
Yaping Zhao, Yanrong Li, Jianjun Feng, Mengfan Dang, Yajing Ren and Xingqi Luo    
Tubular turbines are widely used in low water head and tidal power development due to their straight flow path, simple structure, and wide efficient area. However, the severe vibration during actual operation greatly affects the safe operation of the tub... ver más
Revista: Water