Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 7 (2020)  /  Artículo
ARTÍCULO
TITULO

Optimisation of 2D U-Net Model Components for Automatic Prostate Segmentation on MRI

Indriani P. Astono    
James S. Welsh    
Stephan Chalup and Peter Greer    

Resumen

In this paper, we develop an optimised state-of-the-art 2D U-Net model by studying the effects of the individual deep learning model components in performing prostate segmentation. We found that for upsampling, the combination of interpolation and convolution is better than the use of transposed convolution. For combining feature maps in each convolution block, it is only beneficial if a skip connection with concatenation is used. With respect to pooling, average pooling is better than strided-convolution, max, RMS or L2 pooling. Introducing a batch normalisation layer before the activation layer gives further performance improvement. The optimisation is based on a private dataset as it has a fixed 2D resolution and voxel size for every image which mitigates the need of a resizing operation in the data preparation process. Non-enhancing data preprocessing was applied and five-fold cross-validation was used to evaluate the fully automatic segmentation approach. We show it outperforms the traditional methods that were previously applied on the private dataset, as well as outperforming other comparable state-of-the-art 2D models on the public dataset PROMISE12.

 Artículos similares

       
 
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour    
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi... ver más
Revista: Applied Sciences

 
Sakorn Mekruksavanich and Anuchit Jitpattanakul    
Smartphones have become ubiquitous, allowing people to perform various tasks anytime and anywhere. As technology continues to advance, smartphones can now sense and connect to networks, providing context-awareness for different applications. Many individ... ver más
Revista: Information

 
Alessandro Massaro    
In the proposed paper, an artificial neural network (ANN) algorithm is applied to predict the electronic circuit outputs of voltage signals in Industry 4.0/5.0 scenarios. This approach is suitable to predict possible uncorrected behavior of control circu... ver más
Revista: AI

 
Yuchen Dong, Heng Zhou, Chengyang Li, Junjie Xie, Yongqiang Xie and Zhongbo Li    
Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detecti... ver más
Revista: Applied Sciences

 
Xiaoqin Xue, Chao Ren, Anchao Yin, Ying Zhou, Yuanyuan Liu, Cong Ding and Jiakai Lu    
In the domain of remote sensing research, the extraction of roads from high-resolution imagery remains a formidable challenge. In this paper, we introduce an advanced architecture called PCCAU-Net, which integrates Pyramid Pathway Input, CoordConv convol... ver más
Revista: Applied Sciences