Resumen
Cancer remains a major challenge in the field of medicine, necessitating innovative therapeutic strategies. Mitogen-activated protein kinase (MAPK) signaling pathways, particularly Extracellular Signal-Regulated Kinase 1 and 2 (ERK1/2), play pivotal roles in cancer pathogenesis. Recently, ERK5 (also known as MAPK7) has emerged as an attractive target due to its compensatory role in cancer progression upon termination of ERK1 signaling. This study explores the potential of Compound 22ac, a novel small molecule inhibitor, to simultaneously target both ERK1 and ERK5 in cancer cells. Using molecular dynamics simulations, we investigate the binding affinity, conformational dynamics, and stability of Compound 22ac when interacting with ERK1 and ERK5. Our results indicate that Compound 22ac forms strong interactions with key residues in the ATP-binding pocket of both ERK1 and ERK5, effectively inhibiting their catalytic activity. Furthermore, the simulations reveal subtle differences in the binding modes of Compound 22ac within the two kinases, shedding light on the dual inhibitory mechanism. This research not only elucidates a structural mechanism of action of Compound 22ac, but also highlights its potential as a promising therapeutic agent for cancer treatment. The dual inhibition of ERK1 and ERK5 by Compound 22ac offers a novel approach to disrupting the MAPK signaling cascade, thereby hindering cancer progression. These findings may contribute to the development of targeted therapies that could improve the prognosis for cancer patients.