Resumen
Expansion of marine aquaculture into more remote areas will likely accelerate over the next decade. Integrating Marine Renewable Energy (MRE) generation technologies (e.g., wind turbines) into remote, off-grid aquaculture sites will reduce reliance on fossil fuels by allowing localised low-carbon power generation, but may also result in novel environmental pressures. In this study, we undertook a thought experiment to assess the potential for increased collision risks to local marine and coastal bird species of integrating small wind turbines (4 units; combined capacity of 200 MWh) into a generalised marine fish farm in western Scotland (UK). Potential risks to bird species were assessed using a bespoke Sensitivity Index (SI) based on 12 factors, including population size, adult survival rate, UK conservation status, flight manoeuvrability, nocturnal flight activity, habitat preference, sensitivity to wind farms, attraction to fish farms for feeding and/or resting, and attraction to other marine anthropogenic structures/activities. SI scores varied substantially between species, but large gulls (Larus sp.) and European shag (Phalacrocorax aristotelis) were expected to be at the greatest potential risk. The general lack of information on interactions between birds and fish farms represented a significant knowledge gap, and greater focus on these interactions is needed to improve future risk assessments.