Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 14 Par: 6 (2024)  /  Artículo
ARTÍCULO
TITULO

Technoeconomic Analysis of Oxygen-Supported Combined Systems for Recovering Waste Heat in an Iron-Steel Facility

Busra Besevli    
Erhan Kayabasi    
Abdulrazzak Akroot    
Wadah Talal    
Ali Alfaris    
Younus Hamoudi Assaf    
Mohammed Y. Nawaf    
Mothana Bdaiwi and Jawad Khudhur    

Resumen

In this study, it is proposed to generate electrical energy by recovering the waste heat of an annealing furnace (AF) in an iron and steel plant using combined cycles such as steam Rankine cycle (SRC), organic Rankine cycle (ORC), Kalina cycle (KC) and transcritical CO2 cycle (t-CO2). Instead of releasing the waste heat into the atmosphere, the waste heat recovery system (WHRS) discharges the waste heat into the plant?s low-temperature oxygen line for the first time, achieving a lower temperature and pressure in the condenser than conventional systems. The waste heat of the flue gas (FG) with a temperature of 1093.15 K from the reheat furnace was evaluated using four different cycles. To maximize power generation, the SRC input temperature of the proposed system was studied parametrically. The cycles were analyzed based on thermal efficiency and net output power. The difference in SRC inlet temperature is 221.6 K for maximum power output. The proposed system currently has a thermal efficiency and total power output of 0.19 and 596.6 kW, respectively. As an environmental impact, an emission reduction potential of 23.16 tons/day was achieved. In addition, the minimum power generation cost of the proposed system is $0.1972 per kWh.

 Artículos similares

       
 
Long Lyu, Ankang Kan, Wu Chen, Yuan Zhang and Bingchun Fu    
Recovering the waste heat of a marine main engine (M/E) to generate electricity was an environmental way to minimize the carbon dioxide emissions for ships, especially with organic Rankine cycle (ORC) technology. The M/E had variable loads and operating ... ver más

 
Wu Chen, Song Xue, Long Lyu, Wenhua Luo and Wensheng Yu    
In this study, a main marine engine with a rating power of 21,840 kW for a ship sailing in an actual voyage was obtained as the research object. The engine?s exhaust gas and jacket cooling water were adopted as the heat source of the organic Rankine cycl... ver más

 
Vinutha K, M Sunitha, J. K. Madhukesh, Umair Khan, Aurang Zaib, El-Sayed M. Sherif, Ahmed M. Hassan and Ioan Pop    
Studying waste discharge concentration across a convergent/divergent channel is essential in environmental-related applications. Successful environmental administration must understand the behavior and concentration of waste contaminants released into th... ver más
Revista: Water

 
Junting Liu, Jinbo Qu, Yongming Feng, Yuanqing Zhu and Yunjin Wu    
The mandatory implementation of the standards laid out in the Energy Efficiency Existing Ship Index (EEXI) and the Carbon Intensity Indicator (CII) requires ships to improve their efficiency and thereby reduce their carbon emissions. To date, the steam R... ver más

 
Jan Spriet, Ajeet Pratap Singh, Brian Considine, Madhu K. Murali and Aonghus McNabola    
This paper assesses the performance of waste heat recovery from commercial kitchen wastewater in practice. A pilot study of heat recovery from the kitchen at Penrhyn Castle, a tourist attraction in North Wales (UK), is outlined. The pilot heat recovery s... ver más
Revista: Water