Resumen
Whether it is important components of a machine tool itself or various important components processed by the machine tool, many vital quality characteristics mostly belong to the smaller-the-better type. When the process quality levels of these quality characteristics do not attain to the criteria, friction loss may increase during the machine operation, affecting not only the process precision and accuracy but also the lifetime of the product. Therefore, this study applied a smaller-the-better six-sigma quality index simultaneously demonstrating process quality level and process yield. Besides, in coping with statistical process control data, a one-tail confidence-interval-based fuzzy testing method was developed to evaluate process quality. Because this approach is built on the basis of confidence intervals, it can reduce the possibility of misjudgment resulting from sampling errors as well as integrate past experience to enhance the accuracy and precision of the assessment, and then it can grasp the timeliness of improvement.