Resumen
Fine-scale population mapping is of great significance for capturing the spatial and temporal distribution of the urban population. Compared with traditional census data, population data obtained from mobile phone data has high availability and high real-time performance. However, the spatial distribution of base stations is uneven, and the service boundaries remain uncertain, which brings significant challenges to the accuracy of dasymetric population mapping. This paper proposes a Grid Voronoi method to provide reliable spatial boundaries for base stations and to build a subsequent regression based on mobile phone and building use data. The results show that the Grid Voronoi method gives high fitness in building use regression, and further comparison between the traditional ordinary least squares (OLS) regression model and geographically weighted regression (GWR) model indicates that the building use data can well reflect the heterogeneity of urban geographic space. This method provides a relatively convenient and reliable idea for capturing high-precision population distribution, based on mobile phone and building use data.