Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Acoustics  /  Vol: 4 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

On the Robustness and Efficiency of the Plane-Wave-Enriched FEM with Variable q-Approach on the 2D Room Acoustics Problem

Shunichi Mukae    
Takeshi Okuzono and Kimihiro Sakagami    

Resumen

Partition of unity finite element method with plane wave enrichment (PW-FEM) uses a shape function with a set of plane waves propagating in various directions. For room acoustic simulations in a frequency domain, PW-FEM can be an efficient wave-based prediction method, but its practical applications and especially its robustness must be studied further. This study elucidates PW-FEM robustness via 2D real-scale office room problems including rib-type acoustic diffusers. We also demonstrate PW-FEM performance using a sparse direct solver and a high-order Gauss?Legendre rule with a recently developed rule for ascertaining the number of integration points against the classical linear and quadratic FEMs. Numerical experiments investigating mesh size and room geometrical complexity effects on the robustness of PW-FEM demonstrated that PW-FEM becomes more robust at wide bands when using a mesh in which the maximum element size maintains a comparable value to the wavelength of the upper-limit frequency. Moreover, PW-FEM becomes unstable with lower spatial resolution mesh, especially for rooms with complex shape. Comparisons of accuracies and computational costs of linear and quadratic FEM revealed that PW-FEM requires twice the computational time of the quadratic FEM with a mesh having spatial resolution of six elements per wavelength, but it is highly accurate at wide bands with lower memory and with markedly fewer degrees of freedom. As an additional benefit of PW-FEM, the impulse response waveform of quadratic FEM in a time domain was found to deteriorate over time, but the PW-FEM waveform can maintain accurate waveforms over a long time.

 Artículos similares

       
 
Thinh Huynh and Young-Bok Kim    
This study investigates the automated transportation control problem of an offshore floating platform that has limited or no maneuverability. The proposed solution involves two tugboats pushing into the platform and two other tugs towing it in the opposi... ver más

 
Jinghua Li, Yidong Chen, Lei Zhou, Ruipu Dong, Wenhao Yin, Wenhao Huang and Fan Zhang    
In the context of increasingly competitive shipbuilding, the flexible multi-level picking system, composed of high-rise shelves, Automated Guided Vehicles (AGVs), and picking stations, has been of gradual interest because of its advantages in operation e... ver más
Revista: Applied Sciences

 
Yi?an Wang, Zhe Wu and Dong Ni    
Optimizing the heliostat field aiming strategy is crucial for maximizing thermal power production in solar power tower (SPT) plants while adhering to operational constraints. Although existing approaches can yield highly optimal solutions, their consider... ver más
Revista: Applied Sciences

 
Jacopo Guadagnini, Gabriele De Zaiacomo and Michèle Lavagna    
This paper focuses on the mission analysis of the return trajectory of a Vertical Landing Reusable Launch Vehicle, both for Return-to-Launch-Site (RTLS) and DownRange Landing (DRL) recovery strategies. The main objective is to assess the mission performa... ver más
Revista: Aerospace

 
Saad Chahba, Guillaume Krebs, Cristina Morel, Rabia Sehab and Ahmad Akrad    
The electric urban air mobility sector has gained significant attraction in public debates, particularly with the proliferation of announcements demonstrating new aerial vehicles and the infrastructure that goes with them. In this context, the developmen... ver más
Revista: Aerospace