Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Clean Technologies  /  Vol: 5 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

Efficient Adsorption and Catalytic Reduction of Phenol Red Dye by Glutaraldehyde Cross-Linked Chitosan and Its Ag-Loaded Catalysts: Materials Synthesis, Characterization and Application

Chiara Concetta Siciliano    
Van Minh Dinh    
Paolo Canu    
Jyri-Pekka Mikkola and Santosh Govind Khokarale    

Resumen

In this study, glutaraldehyde cross-linked chitosan support, as well as the catalysts obtained after loading Ag metal (Ag/Chitosan), were synthesised and applied for adsorption and reduction of phenol red dye in an aqueous solution. The Ag/chitosan catalysts were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis techniques. The catalytic reduction and adsorption performance of phenol red dye with Ag/chitosan and cross-linked chitosan, respectively, was performed at ambient reaction conditions. The reduction of dye was carried out using sodium borohydride (NaBH4) as the reducing agent, while the progress of adsorption and reduction study was monitored with ultraviolet-visible (UV-vis) spectrophotometry technique. The reduction of the phenol red dye varied with the amount of catalyst, the concentration of NaBH4, Ag metal loading, reaction temperature, phenol red dye concentration and initial pH of the dye solution. The dye solution with a nearly-neutral pH (6.4) allowed efficient adsorption of the dye, while acidic (pH = 4) and alkaline (pH = 8, 11, 13.8) solutions showed incomplete or no adsorption of dye. The reusability of the Ag/chitosan catalyst was applied for the complete reduction of the dye, where no significant loss of catalytic activity was observed. Hence, the applicability of cross-linked chitosan and Ag/catalyst was thus proven for both adsorption and reduction of phenol red dye in an aqueous solution and can be applied for industrial wastewater treatment.

 Artículos similares

       
 
Junqing Xu, Meitian Pan, Cong Zou, Xueqiong Huang, Takeshi Hagio, Ryoichi Ichino, Long Kong and Liang Li    
Heavy metal pollution poses an environmental risk, and its efficient removal and facile separation from water remains a challenge. Magnetic iron oxide, an eco-friendly, relatively stable, and easy-separation material, has been regarded as one of the most... ver más
Revista: Water

 
Jin-Kyu Kang, Khonekeo Kingkhambang, Chang-Gu Lee and Seong-Jik Park    
Phosphorus is an essential macroelement in plant growth and the human body, but excessive water enrichment with phosphorus is a global threat to water quality. To address this problem, the development of an efficient, affordable adsorbent for use in remo... ver más
Revista: Water

 
Md. Shafiquzzaman, Amimul Ahsan, Md. Mahmudul Hasan, Abdelkader T. Ahmed and Quazi Hamidul Bari    
Higher levels of arsenic (As) and iron (Fe) in groundwater have been reported globally. This study aims to enhance our understanding of the role of naturally occurring dissolved Fe(II) in removing As from groundwater. Field experiments were conducted usi... ver más
Revista: Water

 
Jie Chen, Yao Yang, Yuanyuan Yao, Zhujian Huang, Qiaoling Xu, Liping He and Beini Gong    
The contamination of antibiotics in the environment has raised serious concerns, impacting both human life and ecosystems. This has led to a growing focus on the development of cost-effective and environmentally friendly adsorbent materials. Mesoporous m... ver más
Revista: Water

 
Hebatullah H. Farghal, Marianne Nebsen and Mayyada M. H. El-Sayed    
In this work, we develop chitosan/xylan-coated magnetite (CsXM) nanoparticles as eco-friendly efficient adsorbents for the facile removal of contaminants from water. Characterization of CsXM using Fourier Transform Infra-Red (FTIR) Spectroscopy, Scanning... ver más
Revista: Water