Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Water  /  Vol: 10 Par: 2 (2018)  /  Artículo
ARTÍCULO
TITULO

Soil Media CO2 and N2O Fluxes Dynamics from Sand-Based Roadside Bioretention Systems

Paliza Shrestha    
Stephanie E. Hurley and E. Carol Adair    

Resumen

Green stormwater infrastructure such as bioretention is commonly implemented in urban areas for stormwater quality improvements. Although bioretention systems? soil media and vegetation have the potential to increase carbon (C) and nitrogen (N) storage for climate change mitigation, this storage potential has not been rigorously studied, and any analysis of it must consider the question of whether bioretention emits greenhouse gases to the atmosphere. We monitored eight roadside bioretention cells for CO2-C and N2O-N fluxes during two growing seasons (May through October) in Vermont, USA. C and N stocks in the soil media layers, microbes, and aboveground vegetation were also quantified to determine the overall C and N balance. Our bioretention cells contained three different treatments: plant species mix (high diversity versus low diversity), soil media (presence or absence of P-sorbent filter layer), and hydrologic (enhanced rainfall and runoff in some cells). CO2-C and N2O-N fluxes from all cells averaged 194 mg m-2 h-1 (range: 37 to 374 mg m-2 h-1) and 10 µg m-2 h-1 (range: -1100 to 330 µg m-2 h-1), respectively. There were no treatment-induced changes on gas fluxes. CO2-C fluxes were highly significantly correlated with soil temperature (R2 = 0.68, p < 0.0001), while N2O-N fluxes were weakly correlated with temperature (R2 = 0.017, p = 0.04). Bioretention soil media contained the largest pool of total C and N (17,122 g and 1236 g, respectively) when compared with vegetation and microbial pools. Microbial biomass C made up 14% (1936 g) of the total soil C in the upper 30 cm media layer. The total C and N sequestered by bioretention plants were 13,020 g and 320 g, respectively. After accounting for C and N losses via gas fluxes, the bioretention appeared to be a net sink for those nutrients. We also compared our bioretention gas fluxes to those from a variety of natural (i.e., grasslands and forests) and artificial (i.e., fertilized and irrigated or engineered) land-use types. We found bioretention fluxes to be in the mid-range among these land-use types, mostly likely due to organic matter (OM) influences on decomposition being similar to processes in natural systems.

 Artículos similares

       
 
Johannes Pistrol, Mario Hager, Fritz Kopf and Dietmar Adam    
Vibratory rollers are mainly used for the near-surface compaction of granular media for a wide variety of construction tasks. In addition to the pronounced depth effect, vibratory rollers have offered the possibility of work-integrated compaction control... ver más
Revista: Infrastructures

 
Jifang Du, Yinqiu Zhang, Shuaifeng Wu, Yu Dong and Junwei Shi    
Dynamic compaction (DC) is a ground treatment method that achieves soil densification effects using impact forces. The ground displacement of a crater induced by a hammer is often used for the determination of densification, but less attention has been p... ver más
Revista: Buildings

 
T. Vamsi Nagaraju, Alireza Bahrami, Ch. Durga Prasad, Sireesha Mantena, Monalisa Biswal and Md. Rashadul Islam    
The increase in population has made it possible for better, more cost-effective vehicular services, which warrants good roadways. The sub-base that serves as a stress-transmitting media and distributes vehicle weight to resist shear and radial deformatio... ver más
Revista: Buildings

 
Charalampos Konstantinou and Yuze Wang    
Microbially induced calcium carbonate precipitation (MICP) is an innovative biocementation technique that facilitates the formation of calcium carbonate within a pore network. Initially gaining prominence in the field of geotechnical engineering, MICP ha... ver más
Revista: Hydrology

 
George Kargas, Dimitrios Koka and Paraskevi A. Londra    
In the present study, the three-parameter one-dimensional vertical infiltration equation recently proposed by Poulovassilis and Argyrokastritis is examined. The equation includes the saturated hydraulic conductivity (Ks), soil sorptivity (S), and an addi... ver más
Revista: Hydrology