Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 24 (2022)  /  Artículo
ARTÍCULO
TITULO

GeoBERT: Pre-Training Geospatial Representation Learning on Point-of-Interest

Yunfan Gao    
Yun Xiong    
Siqi Wang and Haofen Wang    

Resumen

Thanks to the development of geographic information technology, geospatial representation learning based on POIs (Point-of-Interest) has gained widespread attention in the past few years. POI is an important indicator to reflect urban socioeconomic activities, widely used to extract geospatial information. However, previous studies often focus on a specific area, such as a city or a district, and are designed only for particular tasks, such as land-use classification. On the other hand, large-scale pre-trained models (PTMs) have recently achieved impressive success and become a milestone in artificial intelligence (AI). Against this background, this study proposes the first large-scale pre-training geospatial representation learning model called GeoBERT. First, we collect about 17 million POIs in 30 cities across China to construct pre-training corpora, with 313 POI types as the tokens and the level-7 Geohash grids as the basic units. Second, we pre-train GeoEBRT to learn grid embedding in self-supervised learning by masking the POI type and then predicting. Third, under the paradigm of ?pre-training + fine-tuning?, we design five practical downstream tasks. Experiments show that, with just one additional output layer fine-tuning, GeoBERT outperforms previous NLP methods (Word2vec, GloVe) used in geospatial representation learning by 9.21% on average in F1-score for classification tasks, such as store site recommendation and working/living area prediction. For regression tasks, such as POI number prediction, house price prediction, and passenger flow prediction, GeoBERT demonstrates greater performance improvements. The experiment results prove that pre-training on large-scale POI data can significantly improve the ability to extract geospatial information. In the discussion section, we provide a detailed analysis of what GeoBERT has learned from the perspective of attention mechanisms.