Resumen
One of the fundamental tasks in the maintenance of port operations is periodic dredging. These dredging operations facilitate the elimination of sediments that the coastal dynamics introduce. Dredging operations are increasingly restrictive and costly due to environmental requirements. Understanding the condition of the seabed before and after dredging is essential. In addition, determining how the seabed has behaved in recent years is important to consider when planning future dredging operations. In order to analyze the behavior of sediment transport and the changes to the seabed due to sedimentation, studies of littoral dynamics are conducted to model the deposition of sediments. Another methodology that could be used to analyze the real behavior of sediments would be to study and compare port bathymetries collected periodically. The problem with this methodology is that it requires numerous bathymetric surveys to produce a sufficiently significant analysis. This study provides an effective solution for obtaining a dense time series of bathymetry mapping using satellite data, and enables the past behavior of the seabed to be examined. The methodology proposed in this work uses Sentinel-2A (10 m resolution) satellite images to obtain historical bathymetric series by the development of a random forest algorithm. From these historical bathymetric series, it is possible to determine how the seabed has behaved and how the entry of sediments into the study area occurs. This methodology is applied in the Port of Luarca (Principality of Asturias), obtaining satellite images and extracting successive bathymetry mapping utilizing the random forest algorithm. This work reveals how once the dock was dredged, the sediments were redeposited and the seabed recovered its level prior to dredging in less than 2 months.