Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Water  /  Núm: Vol. 11 Par: PP (PP)  /  Artículo
ARTÍCULO
TITULO

Using Real-Time Data and Unsupervised Machine Learning Techniques to Study Large-Scale Spatio?Temporal Characteristics of Wastewater Discharges and their Influence on Surface Water Quality in the Yangtze River Basin

Zhenzhen Di    
Miao Chang    
Peikun Guo    
Yang Li and Yin Chang    

Resumen

Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those in surface water have not been fully revealed and unsupervised machine learning techniques, such as clustering algorithms, have been neglected in related research fields. In this study, real-time monitoring data for chemical oxygen demand (COD), ammonia nitrogen (NH3-N), pH, and dissolved oxygen in the wastewater discharged from 2213 factories and in the surface water at 18 monitoring sections (sites) in 7 administrative regions in the Yangtze River Basin from 2016 to 2017 were collected and analyzed by the partitioning around medoids (PAM) and expectation?maximization (EM) clustering algorithms, Welch t-test, Wilcoxon test, and Spearman correlation. The results showed that compared with the spatial cluster comprising unpolluted sites, the spatial cluster comprised heavily polluted sites where more wastewater was discharged had relatively high COD (>100 mg L-1) and NH3-N (>6 mg L-1) concentrations and relatively low pH (<6) from 15 industrial classes that respected the different discharge limits outlined in the pollutant discharge standards. The results also showed that the economic activities generating wastewater and the geographical distribution of the heavily polluted wastewater changed from 2016 to 2017, such that the concentration ranges of pollutants in discharges widened and the contributions from some emerging enterprises became more important. The correlations between the quality of the wastewater and the surface water strengthened as the whole-year data sets were reduced to the heavily polluted periods by the EM clustering and water quality evaluation. This study demonstrates how unsupervised machine learning algorithms play an objective and effective role in data mining real-time monitoring information and highlighting spatio?temporal relationships between pollutants in wastewater discharges and surface water to support scientific water resource management.

 Artículos similares

       
 
María Zamarreño Suárez, Juan Marín Martínez, Francisco Pérez Moreno, Raquel Delgado-Aguilera Jurado, Patricia María López de Frutos and Rosa María Arnaldo Valdés    
The use of electroencephalography (EEG) techniques has many advantages in the study of human performance in air traffic control (ATC). At present, these are non-intrusive techniques that allow large volumes of data to be recorded on a continuous basis us... ver más
Revista: Aerospace

 
Wenhao Li, Xianxia Zhang, Yueying Wang and Songbo Xie    
Model predictive control (MPC), an extensively developed rolling optimization control method, is widely utilized in the industrial field. While some researchers have incorporated predictive control into underactuated unmanned surface vehicles (USVs), mos... ver más

 
Pengyu Wei, Chuntong Li, Ze Jiang and Deyu Wang    
Digital twins, an innovative technology propelled by data and models, play a seminal role in the digital transformation and intelligent upgrade of ships. This study introduces a digital twin methodology for the real-time monitoring of ship structure defo... ver más

 
Khaled Arbateni and Amir Benzaoui    
Electrocardiography (ECG) is a simple and safe tool for detecting heart conditions. Despite the diaspora of existing heartbeat classifiers, improvements such as real-time heartbeat identification and patient-independent classification persist. Reservoir ... ver más
Revista: Applied Sciences

 
Pengfei Ning, Dianjun Zhang, Xuefeng Zhang, Jianhui Zhang, Yulong Liu, Xiaoyi Jiang and Yansheng Zhang    
The Array for Real-time Geostrophic Oceanography (Argo) program provides valuable data for maritime research and rescue operations. This paper is based on Argo historical and satellite observations, and inverted sea surface and submarine drift trajectori... ver más