Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

Experimental Investigation of a Moving Packed-Bed Heat Exchanger Suitable for Concentrating Solar Power Applications

Nader S. Saleh    
Shaker Alaqel    
Eldwin Djajadiwinata    
Rageh S. Saeed    
Zeyad Al-Suhaibani    
Obida Zeitoun    
Hany Al-Ansary    
Abdulelah Alswaiyd    
Abdelrahman El-Leathy    
Syed Danish    
Sheldon Jeter    
Ashley Byman    
Neville Jordison and David Moon    

Resumen

This paper presents a thermal performance evaluation of a novel particle-to-air heat exchanger. The heat exchanger has a patented design with a shell-and-tube configuration. Solid particles move as a dense packed-bed inside the vertical tubes of the heat exchanger whereas air flows on the shell-side. This design avoids a number of limitations associated with the state-of-the-art heat exchangers in the same category, such as the stagnant/void zones and the prolonged residence time. The heat exchanger has a 50-kW thermal duty; it has been integrated into the particle-based concentrating solar power facility located at the campus of King Saud University in Riyadh, Saudi Arabia. The detailed description of the heat exchanger and the integration process is introduced. The recuperated air of the facility?s power cycle is used to heat the solid particles being circulated inside the facility. The solid particles used in this study are engineered particles called Carbobead CP with 0.3 mm mean diameter. The effect of particle flow rate on the thermal performance of the heat exchanger is investigated. The results show that as the particle flow rate increases, the overall heat transfer coefficient (U) increases; a maximum value was measured to be 150 W/m2-°C based on LMTD calculations. The measurement accuracy was verified by repeating several tests; a slight variation was observed in the measured U. The results also show that only a small air pressure drop (~5 kPa) was measured across the heat exchanger. Furthermore, it was found that a significant part of the heat exchange occurred at the bottom section of the heat exchanger.

 Artículos similares

       
 
Xianqing Liu, Yu Ding, Wenlong Li, Puyang Zhang, Kui Yu, Yutao Feng, Nan Lv and Sheng Luo    
In recent years, multi-bucket foundations have been studied and gradually adopted in engineering practices as a novel foundation for offshore wind turbines within a range of water depth of 30 to 50 m. This study investigated the motion characteristics of... ver más

 
Jiuzhi Fu, Yang Zhang and Yanyue Qin    
In this investigation, the effects of different fabrics with 0.20% carbon fiber textile (CFT), 0.21% glass fiber textile (GFT), and 0.25% basalt fiber textile (BFT) on the properties of TR-UHPC were investigated by axial tensile tests. A bending test of ... ver más
Revista: Applied Sciences

 
Sonja Kostic, Vladimir Kocovic, Suzana Petrovic Savic, Dragomir Miljanic, Jasmina Miljojkovic, Milan Djordjevic and Djordje Vukelic    
Polypropylene is a widely used linear hydrocarbon polymer with diverse applications due to its exceptional physicochemical characteristics and minimal changes during the recycling process. Numerous studies have focused on factors influencing the mechanic... ver más
Revista: Applied Sciences

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Zheng Gong, Nicholas Barnett, Jangguen Lee, Hyunwoo Jin, Byunghyun Ryu, Taeyoung Ko, Joung Oh, Andrew Dempster and Serkan Saydam    
Water resources are essential to human exploration in deep space or the establishment of long-term lunar habitation. Ice discovered on the Moon may be useful in future missions to the lunar surface, necessitating the consideration of in situ resource uti... ver más
Revista: Aerospace