Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Buildings  /  Vol: 8 Par: 8 (2018)  /  Artículo
ARTÍCULO
TITULO

Shear Performance Assessment of Timber Log-House Walls under In-Plane Lateral Loads via Numerical and Analytical Modelling

Martina Sciomenta    
Chiara Bedon    
Massimo Fragiacomo and Angelo Luongo    

Resumen

Log-house is an ancient construction technology based on the superposition of linear timber logs, connected to the orthogonal walls by a system of carvings, notches and corner joints. Due to the fact that this solution is widely used in constructions located in seismic or windy areas, the in-plane behaviour of walls represents an attractive research topic. In this paper, major outcomes of a Finite-Element (FE) numerical investigation carried out on single corner joints currently in use for log-house buildings are discussed under different loading conditions (i.e., in-plane lateral and vertical compressive loads), including parametric analyses to capture the key aspects of their typical structural response. Careful consideration is paid for the elastic stiffness of such joints, being of primary interest for design purposed. At the same time, a linear analytical formulation is presented, with the aim of providing a simple but useful tool in support of design, and especially to estimate the maximum lateral displacement/resistance for a given log-house wall when subjected to in-plane lateral forces. There, the intrinsic mechanical features of corner joints and related aspects are properly considered (i.e., static friction phenomena, as well as the presence of small gaps, etc.). The analytical model, in addition, takes advantage of the numerically predicted joint stiffness values, being dependent on several parameters. As shown, rather good agreement is obtained between the FE model output, the analytical predictions and past reference experimental/numerical results available in the literature for full-scale log-house walls under in-plane lateral loads, hence suggesting the potential of the proposed approach. In conclusion, possible Force-Preload-Displacement (FPD) charts are presented, to act as simplified tools for preliminary design considerations.

 Artículos similares

       
 
Weiwei Wang, Xuetao Lyu, Jun Zheng, Shanchang Yi, Jiehong Li and Yang Yu    
Currently, reinforced thin-walled irregular steel tube concrete frame structures have been applied in engineering, but there are few researches on the seismic performance of this type of structures after fire. The seismic performance of structures after ... ver más
Revista: Buildings

 
Hang Su, Tao Deng, Zengquan Yang, Jianpeng Qin and Lu Zheng    
Shield misalignment is a common problem in shield tunnels, which seriously affects the safety and durability of tunnels. However, at present, there is a lack of research on the influence of shield misalignment on the shear capacity of the circumferential... ver más
Revista: Buildings

 
Wenbin Zhang, Yan Feng, Xiangqiang Zeng, Ming Xu, Liang Gong and Lijun Rui    
A new type of assembled integral multi-ribbed composite floor system with novel wet joint and steel sleeve connections, which exhibits satisfactory strength and stiffness, was proposed in the previous study. To further study the flexural performances of ... ver más
Revista: Buildings

 
Bin Wu, Jia-Ning Wu, Yan Lu, Wei-Yi Zhang, Dong Zhang and Song-Han Wang    
An ordinary double steel plate?concrete composite wall (ODSC wall) is composed of core concrete, the faceplates, and shear connectors such as studs, etc. Based on an ODSC wall, a new type of stiffened double steel plate?concrete composite wall (SDSC wall... ver más
Revista: Buildings

 
Gao Huang, Chengjun Qiu, Mengtian Song, Wei Qu, Yuan Zhuang, Kaixuan Chen, Kaijie Huang, Jiaqi Gao, Jianfeng Hao and Huili Hao    
Cavitation is typically observed when high-pressure submerged water jets are used. A composite nozzle, based on an organ pipe, can increase shear stress on the incoming flow, significantly enhancing cavitation performance by stacking Helmholtz cavities i... ver más
Revista: Water