Resumen
With increasing exploitation of groundwater resources and implementation of various activities in their recharge areas, it is vital to conduct a comprehensive assessment of aquifers to ensure their conservation and sustainable management. In the present study, we used a comprehensive approach to conceptualise and identify the functioning of two connected aquifer systems in north-eastern Slovenia: the Quaternary porous aquifers Dravsko polje and Ptujsko polje. The study presents the conceptual models of both aquifers and their interconnectedness using separate mathematical-numerical models with the aim of ensuring an integrated management of these alluvial aquifer systems. It also highlights the importance of understanding connections between such systems for simulating groundwater flow and transport of different contaminants. To describe the entire aquifer system, the study defines its three essential elements: the geometry of the aquifers, their recharge by precipitation, and other boundary conditions. The geometry of the Quaternary aquifers was defined using Sequential Indicator Simulation (SIS) with the ESRI?s ArcMap software. Next, LIDAR was used for determining their surface geometry. The hydrogeologic model was designed using the Groundwater Modelling System (GMS) developed by AQUAVEO. We used the MODFLOW 2000 calculation method based on the finite difference method (FDM). The model was calibrated with the PEST module, which was used to calibrate hydraulic conductivity and hydraulic heads between the measured and modelled data. Finally, the model was validated using the Nash?Sutcliffe (NSE) efficiency coefficient. In addition, the model results estimated using the PEST tool were validated with the hydraulic conductivities determined at the pumping sites (pumping tests), each belonging to water protection zones that define the maximum travel time of the particles. This was performed using the MODPATH method. The paper also presents the possibility of modelling heterogeneous but interdependent aquifers in a groundwater body. Modelling the connection between the two aquifers, which are the most important ones in the region, is essential for a comprehensive management of the entire system of water resources. The models allow for a better understanding of groundwater flow in both aquifers. Moreover, their interconnectedness will be used for further studies in this field, as well as for integrated water management.