Resumen
Typically, it is difficult to analyze and design a micro/nanofluid system, and the design process cannot follow the traditional law of hydrodynamics. The boundary condition is very important in the applications of a micro/nanofluid system. The existence of boundary slip can reduce the hydrodynamic resistance and enhance fluid flow. How to accurately determine the dynamic boundary conditions is increasingly concerned by researchers. Atomic force microscope (AFM) is proven to be the most advanced experimental instrument for studying the characteristics of the surface and the interaction interface. Most studies on the application of atomic force microscopy to the measurement of the boundary slip do not describe a systematic standard process, leading to many differences in the measurement results. In this paper, a standard process of measuring slip on smooth and flat surfaces is developed, including the data processing methods that minimize the interference factors in the original data as well as simplify the data expression. Thus, the boundary slip can be obtained more easily and accurately.