Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Water  /  Vol: 9 Par: 5 (2017)  /  Artículo
ARTÍCULO
TITULO

Comparative Study on the Selection Criteria for Fitting Flood Frequency Distribution Models with Emphasis on Upper-Tail Behavior

Xiaohong Chen    
Quanxi Shao    
Chong-Yu Xu    
Jiaming Zhang    
Lijuan Zhang and Changqing Ye    

Resumen

The upper tail of a flood frequency distribution is always specifically concerned with flood control. However, different model selection criteria often give different optimal distributions when the focus is on the upper tail of distribution. With emphasis on the upper-tail behavior, five distribution selection criteria including two hypothesis tests and three information-based criteria are evaluated in selecting the best fitted distribution from eight widely used distributions by using datasets from Thames River, Wabash River, Beijiang River and Huai River. The performance of the five selection criteria is verified by using a composite criterion with focus on upper tail events. This paper demonstrated an approach for optimally selecting suitable flood frequency distributions. Results illustrate that (1) there are different selections of frequency distributions in the four rivers by using hypothesis tests and information-based criteria approaches. Hypothesis tests are more likely to choose complex, parametric models, and information-based criteria prefer to choose simple, effective models. Different selection criteria have no particular tendency toward the tail of the distribution; (2) The information-based criteria perform better than hypothesis tests in most cases when the focus is on the goodness of predictions of the extreme upper tail events. The distributions selected by information-based criteria are more likely to be close to true values than the distributions selected by hypothesis test methods in the upper tail of the frequency curve; (3) The proposed composite criterion not only can select the optimal distribution, but also can evaluate the error of estimated value, which often plays an important role in the risk assessment and engineering design. In order to decide on a particular distribution to fit the high flow, it would be better to use the composite criterion.

 Artículos similares

       
 
Shizhen Li, Qinfeng Wu, Yufeng Liu, Longfei Qiao, Zimeng Guo and Fei Yan    
To mitigate the interference of waves on an offshore operation ship, heave compensation systems find widespread application. The performance of heave compensation systems significantly influences the efficiency and safety of maritime operations. This stu... ver más

 
Srdan ?ivkovic, Nenad Stojkovic, Dragana Turnic, Marko Milo?evic and Marija Spasojevic ?urdilovic    
Welded structural hollow sections are becoming increasingly used in contemporary civil engineering buildings. More specific design techniques are needed for connections in steel structures with welded structural hollow sections than for traditional conne... ver más
Revista: Applied Sciences

 
Carolina Bona-Sánchez, Heidi Salokangas and Kaisa Sorsa    
This study explores the complexities of cost behavior in the textile industry, conducting a comparative analysis between firms in the Nordic countries and Spain. Our main goal is to examine how distinct economic and corporate governance models impact the... ver más
Revista: Applied Sciences

 
Shoffan Saifullah and Rafal Drezewski    
Accurate medical image segmentation is paramount for precise diagnosis and treatment in modern healthcare. This research presents a comprehensive study of the efficacy of particle swarm optimization (PSO) combined with histogram equalization (HE) preproc... ver más
Revista: Applied Sciences

 
Yifan Wang, Jinglei Xu, Qihao Qin, Ruiqing Guan and Le Cai    
In this study, we propose a novel dynamic mode decomposition (DMD) energy sorting criterion that works in conjunction with the conventional DMD amplitude-frequency sorting criterion on the high-dimensional schlieren dataset of the unsteady flow of a spik... ver más
Revista: Aerospace