Resumen
This work focuses on revealing the chemical reaction equilibrium behaviors of gas?liquid?solid heterogeneous phases in an oxy-thermal carbide furnace. From a CaC2 formation mechanism investigation, it was determined that a one-step mechanism occurs when there is an excess of C and a high CO partial pressure, which inhibits the formation of Ca in the system, and a two-step mechanism occurs when there is insufficient C and a low CO partial pressure, which promotes the formation of Ca. Based on the calculated results of the equilibrium compositions at 100 kPa and different temperature conditions, the chemical reaction equilibrium behaviors of gas?liquid?solid heterogeneous phases in an oxy-thermal carbide furnace were analyzed at conditions of excess C and insufficient C.