Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Terrain Representation and Distinguishing Ability of Roughness Algorithms Based on DEM with Different Resolutions

Jiang Wu    
Junjie Fang and Jiangbo Tian    

Resumen

Digital elevation model (DEM) resolution is closely related to the degree of expression of real terrain, the extraction of terrain parameters, and the uncertainty of statistical models. Therefore, based on DEMs with various resolutions, this paper explores the representation and distinguishing ability of different roughness algorithms to measure terrain parameters. Fuyang, a district of Hangzhou City with various landform types, was selected as the research area. Slope, root mean squared height, vector deviation, and two-dimensional continuous wavelet transform were selected as four typical roughness algorithms. The resolutions used were 5, 10, 25, and 50 m DEM on the scale for plains, hills, and mountainous areas. The statistical criteria of effect size and entropy were used as indicators to evaluate and analyze the different roughness algorithms. The results show that in terms of these measures: (1) The expression ability of the SLOPE and root mean squared height (RMSH) algorithms is better than that of the vector deviation method, while the two-dimensional continuous wavelet method based on frequency analysis emphasizes the terrain information within a certain range. (2) The terrain distinguishing ability of the SLOPE and RMSH is not sensitive to the changes in resolution, with the other two algorithms varying with the changes in resolution.