Resumen
Recent developments in virtual environment applications allow users to interact with three-dimensional (3D) objects in virtual environments. As interaction with 3D objects in virtual environments becomes more established, it is important to investigate user performance with such interaction techniques within a specific task. This study investigated two interaction modes, direct and indirect, depending on how the users interacted with the 3D objects, by measuring the accuracy of egocentric distance estimation in a stereoscopic environment. Fourteen participants were recruited to perform an acquisition task with both direct pointing and indirect cursor techniques at three egocentric distances and three task difficulty levels. The accuracy of the egocentric distance estimation, throughput, and task completion time were analyzed for each interaction technique. The indirect cursor technique was found to be more accurate than the direct pointing one. On the other hand, a higher throughput was observed with the direct pointing technique than with the indirect cursor technique. However, there were no significant differences in task completion time between the two interaction techniques. The results also showed accuracy to be higher at the greatest distance (150 cm from the participant) than at the closer distances of 90 cm and 120 cm. Furthermore, the difficulty of the task also significantly affected the accuracy, with accuracy lower in the highest difficulty condition than in the medium and low difficulty conditions. The findings of this study contribute to the understanding of user-interaction techniques in a stereoscopic environment. Furthermore, developers of virtual environments may refer to these findings in designing effective user interactions, especially those in which performance relies on accuracy.