Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 24 (2020)  /  Artículo
ARTÍCULO
TITULO

Autonomous Underwater Vehicle Localization Using Sound Measurements of Passing Ships

Jonghoek Kim    

Resumen

This paper introduces the localization method of an Autonomous Underwater Vehicle (AUV) in environments (such as harbors or ports) where there can be passing ships near the AUV. It is assumed that the AUV can access the trajectory and approximate source level of a passing ship, while identifying the ship by processing the ship?s sound. This paper considers an AUV which can localize itself by integrating propeller and Inertial Measurement Units (IMU). Suppose that the AUV has been moving in underwater environments for a long time, under the IMU-only localization. To fix long-term drift in the IMU-only localization, we propose that the AUV localization uses sound measurements of passing ships whose trajectories are known a priori. As far as we know, this AUV localization method is novel in using sound measurements of passing ships of which the trajectories are known a priori. The performance of the proposed localization method is verified utilizing MATLAB simulations. The simulation results show significant estimation improvements, compared to IMU-only localization. Moreover, using measurements from multiple ships gives better estimation results, compared to the case where the measurement of a single ship is used.

 Artículos similares

       
 
Lin Zhang, Yanbin Gao and Lianwu Guan    
For seabed mapping, the prevalence of autonomous underwater vehicles (AUVs) employing side-scan sonar (SSS) necessitates robust navigation solutions. However, the positioning errors of traditional strapdown inertial navigation system (SINS) and Doppler v... ver más

 
Zhengwei Wang, Haitao Gu, Jichao Lang and Lin Xing    
This study verifies the effects of deployment parameters on the safe separation of Autonomous Underwater Vehicles (AUVs) and mission payloads. The initial separation phase is meticulously modeled based on computational fluid dynamics (CFD) simulations em... ver más

 
Xishuang Li, Lejun Liu, Bigui Huang, Qingjie Zhou and Chengyi Zhang    
Autonomous Underwater Vehicle (AUV)-based multibeam bathymetry, sub-bottom profiles, and side-scan sonar images were collected in 2009 and 2010 to map the geomorphic features along the axial zone of a canyon (referred to as C4) within the canyon system d... ver más

 
Hongli Xu, Hongxu Yang, Zhongyu Bai and Xiangyue Zhang    
Autonomous underwater vehicles (AUVs) are important in areas such as underwater scientific research and underwater resource collection. However, AUVs suffer from data portability and energy portability problems due to their physical size limitation. In t... ver más

 
Hyonjeong Noh, Kwangu Kang and Jin-Yeong Park    
Autonomous underwater vehicles have long been used in marine explorations, and their application in recent polar expeditions is particularly noteworthy. However, the complexity and extreme conditions of the polar environment pose risks to the stable oper... ver más