Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Drones  /  Vol: 5 Par: 1 (2021)  /  Artículo
ARTÍCULO
TITULO

Modeling Streamflow and Sediment Loads with a Photogrammetrically Derived UAS Digital Terrain Model: Empirical Evaluation from a Fluvial Aggregate Excavation Operation

Joseph P. Hupy and Cyril O. Wilson    

Resumen

Soil erosion monitoring is a pivotal exercise at macro through micro landscape levels, which directly informs environmental management at diverse spatial and temporal scales. The monitoring of soil erosion can be an arduous task when completed through ground-based surveys and there are uncertainties associated with the use of large-scale medium resolution image-based digital elevation models for estimating erosion rates. LiDAR derived elevation models have proven effective in modeling erosion, but such data proves costly to obtain, process, and analyze. The proliferation of images and other geospatial datasets generated by unmanned aerial systems (UAS) is increasingly able to reveal additional nuances that traditional geospatial datasets were not able to obtain due to the former?s higher spatial resolution. This study evaluated the efficacy of a UAS derived digital terrain model (DTM) to estimate surface flow and sediment loading in a fluvial aggregate excavation operation in Waukesha County, Wisconsin. A nested scale distributed hydrologic flow and sediment loading model was constructed for the UAS point cloud derived DTM. To evaluate the effectiveness of flow and sediment loading generated by the UAS point cloud derived DTM, a LiDAR derived DTM was used for comparison in consonance with several statistical measures of model efficiency. Results demonstrate that the UAS derived DTM can be used in modeling flow and sediment erosion estimation across space in the absence of a LiDAR-based derived DTM.

 Artículos similares

       
 
Yuxiu Liu, Xing Yuan, Yang Jiao, Peng Ji, Chaoqun Li and Xindai An    
Integrating numerical weather forecasts that provide ensemble precipitation forecasts, land surface hydrological modeling that resolves surface and subsurface hydrological processes, and artificial intelligence techniques that correct the forecast bias, ... ver más
Revista: Water

 
Hatef Dastour and Quazi K. Hassan    
Having a complete hydrological time series is crucial for water-resources management and modeling. However, this can pose a challenge in data-scarce environments where data gaps are widespread. In such situations, recurring data gaps can lead to unfavora... ver más
Revista: Hydrology

 
Nicolás Velásquez, Jaime Ignacio Vélez, Oscar D. Álvarez-Villa and Sandra Patricia Salamanca    
Distributed hydrological modeling has increased its popularity in the community, leading to the development of multiple models with different approaches. However, the rapid growth has also opened a gap between models, interfaces, and advanced users. User... ver más
Revista: Hydrology

 
Suna Ekin Kali, Achira Amur, Lena K. Champlin, Mira S. Olson and Patrick L. Gurian    
The Schuylkill River Watershed in southeastern PA provides essential ecosystem services, including drinking water, power generation, recreation, transportation, irrigation, and habitats for aquatic life. The impact of changing climate and land use on the... ver más
Revista: Water

 
Yizhi Wang, Jia Liu, Lin Xu, Fuliang Yu and Shanjun Zhang    
Streamflow modelling is one of the most important elements for the management of water resources and flood control in the context of future climate change. With the advancement of numerical weather prediction and modern detection technologies, more and m... ver más
Revista: Water