Resumen
In the last few decades, complex light-weight designs have been successfully produced via additive manufacturing (AM), launching a new era in the thinking?design process. In addition, current software platforms provide design tools combined with multi-scale simulations to exploit all the technology benefits. However, the literature highlights that several stages must be considered in the design for additive manufacturing (DfAM) process, and therefore, performing holistic guided-design frameworks become crucial to efficiently manage the process. In this frame, this paper aims at providing the main optimization, design, and simulation tools to minimize the number of design evaluations generated through the different workflow assessments. Furthermore, DfAM phases are described focusing on the implementation of design optimization strategies as topology optimization, lattice infill optimization, and generative design in earlier phases to maximize AM capabilities. In conclusion, the current challenges for the implementation of the workflow are hence described.