Resumen
Micro electrical discharge machining (micro-EDM) has been widely applied in the field of precision machining, but the machining mechanism is still unclear. In this paper, the relationship between the characteristics of discharge plasma and discharge duration is clarified by analyzing the formation and expansion process of the discharge plasma channel under micro-scale discharge conditions. Based on the experimental results, the effects of discharge duration on the discharge current, discharge voltage and discharge crater size are discussed. The results show that the expansion acceleration, internal pressure, temperature, and electron density of the discharge plasma decrease as the discharge duration increase, while the radius and expansion velocity of the discharge plasma increase, and finally the discharge plasma reaches the state of shape?position equilibrium. The resistance of discharge plasma is estimated to fluctuate in the range of 38?45 O by the ratio of discharge maintenance voltage to discharge current. The energy utilization rate of micro-EDM is very high when discharge duration is less than 4 µs, and then decreases gradually as the discharge duration increased. There is a positive linear relationship between discharge crater volume and discharge duration. The discharge duration has no significant effect on the discharge crater depth. This study provides a theoretical basis for further study of discharge plasma characteristics in micro-EDM.