Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Buildings  /  Vol: 12 Par: 5 (2022)  /  Artículo
ARTÍCULO
TITULO

Numerical Analysis of Shallow Foundations with Varying Loading and Soil Conditions

Muhammad Rehan Hakro    
Aneel Kumar    
Mujahid Ali    
Agha Faisal Habib    
Afonso R. G. de Azevedo    
Roman Fediuk    
Mohanad Muayad Sabri Sabri    
Abdelatif Salmi and Youssef Ahmed Awad    

Resumen

The load?deformation relationship under the footing is essential for foundation design. Shallow foundations are subjected to changes in hydrological conditions such as rainfall and drought, affecting their saturation level and conditions. The actual load?settlement response for design and reconstructions is determined experimentally, numerically, or utilizing both approaches. Ssettlement computation is performed through large-scale physical modeling or extensive laboratory testing. It is expensive, labor intensive, and time consuming. This study is carried out to determine the effect of different saturation degrees and loading conditions on settlement shallow foundations using numerical modeling in Plaxis 2D, Bentley Systems, Exton, Pennsylvania, US. Plastic was used for dry soil calculation, while fully coupled flow deformation was used for partially saturated soil. Pore pressure and deformation changes were computed in fully coupled deformation. The Mohr?Columb model was used in the simulation, and model parameters were calculated from experimental results. The study results show that the degree of saturation is more critical to soil settlement than loading conditions. When a 200 KPa load was applied at the center of the footing, settlement was recored as 28.81 mm, which was less than 42.96 mm in the case of the full-depth shale layer; therefore, settlement was reduced by 30% in the underlying limestone rock layer. Regarding settlement under various degrees of saturation (DOS), settlment is increased by an increased degree of saturation, which increases pore pressure and decreases the shear strength of the soil. Settlement was observed as 0.69 mm at 0% saturation, 1.93 mm at 40% saturation, 2.21 mm at 50% saturation, 2.77 mm at 70% saturation, and 2.84 mm at 90% saturation of soil.

 Artículos similares

       
 
Dilanka Chandrasiri, Perampalam Gatheeshgar, Hadi Monsef Ahmadi and Lenganji Simwanda    
In the construction domain, there is a growing emphasis on sustainability, resource efficiency, and energy optimisation. Light-gauge steel panels (LGSPs) stand out for their inherent advantages including lightweight construction and energy efficiency. Ho... ver más
Revista: Buildings

 
Ilias Siarkos, Zisis Mallios and Pericles Latinopoulos    
Groundwater nitrate contamination caused by the excessive use of nitrogen-based fertilizers has been widely recognized as an issue of significant concern in numerous rural areas worldwide. To mitigate nitrate contamination, corrective management practice... ver más
Revista: Hydrology

 
Seyed Fathollah Sajedi, Iman Saffarian, Masoud Pourbaba and Jung Heum Yeon    
This paper presents experimental and theoretical assessments of the structural behavior of circular steel fiber-reinforced concrete (SFRC) columns reinforced with glass fiber-reinforced polymer (GFRP) bars subjected to a concentric axial compressive load... ver más
Revista: Buildings

 
Roberta Prado Mendes, Leonardo Carvalho Mesquita, Maurício Pina Ferreira, Leandro Mouta Trautwein, Markssuel Teixeira Marvila and Marília Gonçalves Marques    
In reinforced concrete flat slab buildings, the transference of unbalanced moments in the slab?column connections usually results from the asymmetry of spans, vertical loads, and horizontal forces from the wind. The punching strength of the slab?column c... ver más
Revista: Buildings

 
Longfei Zhang, Xiang Lan, Kechuan Wu and Wenzheng Yu    
When subjected to seismic activity, tall isolated buildings with a high aspect ratio are susceptible to overturning as a result of the failure of rubber isolation bearings under tension. In order to address this issue, a guided-rail tension device (GR) h... ver más
Revista: Buildings