Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Hydrology  /  Vol: 6 Par: 2 (2019)  /  Artículo
ARTÍCULO
TITULO

Soil Moisture Monitoring in Iran by Implementing Satellite Data into the Root-Zone SMAR Model

Fatemeh Gheybi    
Parivash Paridad    
Farid Faridani    
Ali Farid    
Alonso Pizarro    
Mauro Fiorentino and Salvatore Manfreda    

Resumen

Monitoring Surface Soil Moisture (SSM) and Root Zone Soil Moisture (RZSM) dynamics at the regional scale is of fundamental importance to many hydrological and ecological studies. This need becomes even more critical in arid and semi-arid regions, where there are a lack of in situ observations. In this regard, satellite-based Soil Moisture (SM) data is promising due to the temporal resolution of acquisitions and the spatial coverage of observations. Satellite-based SM products are only able to estimate moisture from the soil top layer; however, linking SSM with RZSM would provide valuable information on land surface-atmosphere interactions. In the present study, satellite-based SSM data from Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer 2 (AMSR2), and Soil Moisture Active Passive (SMAP) are first compared with the few available SM in situ observations, and are then coupled with the Soil Moisture Analytical Relationship (SMAR) model to estimate RZSM in Iran. The comparison between in situ SM observations and satellite data showed that the SMAP satellite products provide more accurate description of SSM with an average correlation coefficient (R) of 0.55, root-mean-square error (RMSE) of 0.078 m3 m-3 and a Bias of 0.033 m3 m-3. Thereafter, the SMAP satellite products were coupled with SMAR model, providing a description of the RZSM with performances that are strongly influenced by the misalignment between point and pixel processes measured in the preliminary comparison of SSM data.

 Artículos similares

       
 
Xiaotian Luo, Cong Yin, Yueqiang Sun, Weihua Bai, Wei Li and Hongqing Song    
Deep soil moisture data have wide applications in fields such as engineering construction and agricultural production. Therefore, achieving the real-time monitoring of deep soil moisture is of significant importance. Current soil monitoring methods face ... ver más
Revista: Water

 
Anthony A. Amori, Olufemi P. Abimbola, Trenton E. Franz, Daran Rudnick, Javed Iqbal and Haishun Yang    
Model calibration is essential for acceptable model performance and applications. The Hybrid-Maize model, developed at the University of Nebraska-Lincoln, is a process-based crop simulation model that simulates maize growth as a function of crop and fiel... ver más
Revista: Water

 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water

 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water

 
Hatice Atalay, Adalet Dervisoglu and Ayse Filiz Sunar    
The Mediterranean region experiences the annual destruction of thousands of hectares due to climatic conditions. This study examines forest fires in Türkiye?s Antalya region, a Mediterranean high-risk area, from 2000 to 2023, analyzing 26 fires that each... ver más