Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Water  /  Vol: 10 Par: 10 (2018)  /  Artículo
ARTÍCULO
TITULO

Extraction of Urban Waterlogging Depth from Video Images Using Transfer Learning

Jingchao Jiang    
Junzhi Liu    
Cheng-Zhi Qin and Dongliang Wang    

Resumen

Urban flood control requires real-time and spatially detailed information regarding the waterlogging depth over large areas, but such information cannot be effectively obtained by the existing methods. Video supervision equipment, which is readily available in most cities, can record urban waterlogging processes in video form. These video data could be a valuable data source for waterlogging depth extraction. The present paper is aimed at demonstrating a new approach to extract urban waterlogging depths from video images based on transfer learning and lasso regression. First, a transfer learning model is used to extract feature vectors from a video image set of urban waterlogging. Second, a lasso regression model is trained with these feature vectors and employed to calculate the waterlogging depth. Two case studies in China were used to evaluate the proposed method, and the experimental results illustrate the effectiveness of the method. This method can be applied to video images from widespread cameras in cities, so that a powerful urban waterlogging monitoring network can be formed.

 Artículos similares

       
 
Dejiang Wang, Quanming Jiang and Jinzheng Liu    
In the field of building information modeling (BIM), converting existing buildings into BIM by using orthophotos with digital surface models (DSMs) is a critical technical challenge. Currently, the BIM reconstruction process is hampered by the inadequate... ver más
Revista: Buildings

 
Dominik Warch, Patrick Stellbauer and Pascal Neis    
In the digital transformation era, video media libraries? untapped potential is immense, restricted primarily by their non-machine-readable nature and basic search functionalities limited to standard metadata. This study presents a novel multimodal metho... ver más
Revista: Future Internet

 
Kevin J. Wienhold, Dongfeng Li, Wenzhao Li and Zheng N. Fang    
The identification of flood hazards during emerging public safety crises such as hurricanes or flash floods is an invaluable tool for first responders and managers yet remains out of reach in any comprehensive sense when using traditional remote-sensing ... ver más
Revista: Hydrology

 
Shuo Shi, Xingtao Tang, Bowen Chen, Biwu Chen, Qian Xu, Sifu Bi and Wei Gong    
Lidar can effectively obtain three-dimensional information on ground objects. In recent years, lidar has developed rapidly from single-wavelength to multispectral hyperspectral imaging. The multispectral airborne lidar Optech Titan is the first commercia... ver más

 
Yilong Wu, Yingjie Chen, Rongyu Zhang, Zhenfei Cui, Xinyi Liu, Jiayi Zhang, Meizhen Wang and Yong Wu    
With the proliferation and development of social media platforms, social media data have become an important source for acquiring spatiotemporal information on various urban events. Providing accurate spatiotemporal information for events contributes to ... ver más