Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 12 (2019)  /  Artículo
ARTÍCULO
TITULO

Multi-Task Learning Using Task Dependencies for Face Attributes Prediction

Di Fan    
Hyunwoo Kim    
Junmo Kim    
Yunhui Liu and Qiang Huang    

Resumen

Face attributes prediction has an increasing amount of applications in human?computer interaction, face verification and video surveillance. Various studies show that dependencies exist in face attributes. Multi-task learning architecture can build a synergy among the correlated tasks by parameter sharing in the shared layers. However, the dependencies between the tasks have been ignored in the task-specific layers of most multi-task learning architectures. Thus, how to further boost the performance of individual tasks by using task dependencies among face attributes is quite challenging. In this paper, we propose a multi-task learning using task dependencies architecture for face attributes prediction and evaluate the performance with the tasks of smile and gender prediction. The designed attention modules in task-specific layers of our proposed architecture are used for learning task-dependent disentangled representations. The experimental results demonstrate the effectiveness of our proposed network by comparing with the traditional multi-task learning architecture and the state-of-the-art methods on Faces of the world (FotW) and Labeled faces in the wild-a (LFWA) datasets.

 Artículos similares

       
 
Jinya Xu, Jiaye Gong, Luyao Wang and Yunbo Li    
The stability of navigation in waves is crucial for ships, and the effect of the waves on navigation stability is complicated. Hence, the LSTM neural network technique is applied to predict the course changing of a ship in different wave conditions, wher... ver más

 
Wentao Lv, Fan Li, Shijie Luo and Jie Xiang    
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that can reduce quality of life and burden families. However, there is a lack of objectivity in clinical diagnosis, so it is very important to develop a method for early and accurate... ver más
Revista: Algorithms

 
Zeyuan Zhao, Ping Li, Yongjie Dai, Zhaoe Min and Lei Chen    
Alzheimer?s disease (AD) is an irreversible neurodegenerative disease. Providing trustworthy AD progression predictions for at-risk individuals contributes to early identification of AD patients and holds significant value in discovering effective treatm... ver más
Revista: Applied Sciences

 
Qi Meng, Xixiang Zhang, Yun Dong, Yan Chen and Dezhao Lin    
Relationship extraction is a crucial step in the construction of a knowledge graph. In this research, the grid field entity relationship extraction was performed via a labeling approach that used span representation. The subject entity and object entity ... ver más
Revista: Applied Sciences

 
Lihong Zhang, Chaolong Liu and Nan Jia    
Multimodal emotion classification (MEC) has been extensively studied in human?computer interaction, healthcare, and other domains. Previous MEC research has utilized identical multimodal annotations (IMAs) to train unimodal models, hindering the learning... ver más
Revista: Applied Sciences