Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Water  /  Vol: 7 Par: 11 (2015)  /  Artículo
ARTÍCULO
TITULO

Sensitivity Analysis of Flow and Temperature Distributions of Density Currents in a River-Reservoir System under Upstream Releases with Different Durations

Gang Chen and Xing Fang    

Resumen

A calibrated three-dimensional Environmental Fluid Dynamics Code model was applied to simulate unsteady flow patterns and temperature distributions in the Bankhead river-reservoir system in Alabama, USA. A series of sensitivity model runs were performed under daily repeated large releases (DRLRs) with different durations (2, 4 and 6 h) from Smith Dam Tailrace (SDT) when other model input variables were kept unchanged. The density currents in the river-reservoir system form at different reaches, are destroyed at upstream locations due to the flow momentum of the releases, and form again due to solar heating. DRLRs (140 m3/s) with longer durations push the bottom cold water further downstream and maintain a cooler bottom water temperature. For the 6-h DRLR, the momentum effect definitely reaches Cordova (~43.7 km from SDT). Positive bottom velocity (density currents moving downstream) is achieved 48.4%, 69.0% and 91.1% of the time with an average velocity of 0.017, 0.042 and 0.053 m/s at Cordova for the 2-h, 4-h and 6-h DRLR, respectively. Results show that DRLRs lasting for at least 4 h maintain lower water temperatures at Cordova. When the 4-h and 6-h DRLRs repeat for more than 6 and 10 days, respectively, bottom temperatures at Cordova become lower than those for the constant small release (2.83 m3/s). These large releases overwhelm the mixing effects due to inflow momentum and maintain temperature stratification at Cordova.

 Artículos similares

       
 
Hossein Salehi, Saeid Gharechelou, Saeed Golian, Mohammadreza Ranjbari and Babak Ghazi    
Hydrological modeling is essential for runoff simulations in line with climate studies, especially in remote areas with data scarcity. Advancements in climatic precipitation datasets have improved the accuracy of hydrological modeling. This research aims... ver más
Revista: Water

 
Bingyu Zhang, Yingtang Wei, Ronghua Liu, Shunzhen Tian and Kai Wei    
The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is diffi... ver más
Revista: Water

 
Martina Hauser, Stefan Reinstaller, Martin Oberascher, Dirk Muschalla and Manfred Kleidorfer    
Owing to climate change, heavy rainfall events have increased in recent years, often resulting in urban flooding. Urban flood models usually consider buildings to be closed obstacles, which is not the case in reality. To address this research gap, an exi... ver más
Revista: Water

 
Christopher Tsang, James Parker and David Glew    
A substantial number of dwellings in the UK have poor building fabric, leading to higher carbon emissions, fuel expenses, and the risk of cold homes. To tackle these challenges, domestic energy efficiency policies are being implemented. One effective app... ver más
Revista: Buildings

 
Ji Hye Kim, Dae Uk Shin and Heegang Kim    
Data centers are energy-intensive facilities, with over 95% of their total cooling load attributed to the heat generated by information technology equipment (ITE). Various energy-saving techniques have been employed to enhance data center efficiency and ... ver más
Revista: Buildings