Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 18 (2020)  /  Artículo
ARTÍCULO
TITULO

Deformation Characteristics of the Shear Zone and Movement of Block Stones in Soil?Rock Mixtures Based on Large-Sized Shear Test

Zhiqing Li    
Feng Hu    
Shengwen Qi    
Ruilin Hu    
Yingxin Zhou and Yawei Bai    

Resumen

Soil?rock mixtures (SRM) have the characteristics of distinct heterogeneity and an obvious structural effect, which make their physical and mechanical properties very complex. This study aimed to investigate the deformation properties and failure mode of the shear zone as well as the movement of block stones in SRM experimentally, not only considering SRM shear strength. The particle composition and proportion of specimens were based on field samples from an SRM slope along national highway 318 in Xigaze, Tibet. Shear zone deformation tests were carried out using an SRM-1000 large-sized geotechnical apparatus controlled by a motor servo, considering the effects of different stone contents by mass (0, 30%, 50%, 70%), vertical pressures (50, 100, 200, 300, and 400 kPa), and block stone sizes (9.5?19.0, 19.0?31.5, and 31.5?53.0 mm). The characteristics of the shear zone deformation and block stone interactions were monitored by placing aluminum wires and dry ash in holes in the specimens. The results showed that the stone content 30% and 70% were two critical thresholds to determine the deformation characteristics of SRM. Under the conditions of high stone content and large particle size, the stones throughout the shear surface tended to extrude and roll during the shear process. The block stones around the shear surface were mainly affected by dilatancy and exhibited extrusion, particle breakage, and redistribution. The deformation pattern could be considered as be analogous to push-type shear deformation from the back to front or composite shear deformation from the front and back to the middle of the slope. It is of great importance to study the shear characteristics and deformation evolution of SRM to understand the progressive shear process of the sliding zone and the failure mode of landslides.

 Artículos similares

       
 
Chang Li, Shuren Hao, Shengjie Zhang, Yongqing Jiang and Zhidong Yi    
In order to understand the long-term process of CO2 storage and demonstrate its safety, multi-field coupled numerical simulation is considered a crucial technology in the field of geological CO2 storage. This study establishes a site-specific homogeneous... ver más
Revista: Water

 
Abdul Basit, Safeer Abbas, Muhammad Mubashir Ajmal, Ubaid Ahmad Mughal, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir    
This study undertakes a comprehensive experimental and numerical analysis of the structural integrity of buried RC sewerage pipes, focusing on the performance of two distinct jointing materials: cement mortar and non-shrinkage grout. Through joint shear ... ver más
Revista: Infrastructures

 
Kun Zhang, Pengbo Chang, Jianxi Ren, Zheng Liu and Ke Wang    
The fractured rock mass in the western cold region is affected by freezing and thawing disasters and is prone to local damage and fracture along the fissures? ends. The fatigue damage induced by repeated frost heave and traffic loads seriously endangers ... ver más
Revista: Applied Sciences

 
Zhengwei Wang, Haitao Gu, Jichao Lang and Lin Xing    
This study verifies the effects of deployment parameters on the safe separation of Autonomous Underwater Vehicles (AUVs) and mission payloads. The initial separation phase is meticulously modeled based on computational fluid dynamics (CFD) simulations em... ver más

 
Yinfeng Tang, Donghai Jiang, Tongxu Wang, Hengjie Luan, Jiangwei Liu and Sunhao Zhang    
In order to study the local deformation of an anchor bolt and the improvement in the shear strength of a structural surface under the misalignment of an anchorage structure surface, FLAC3D software was used to simulate granite, sandstone, and coal specim... ver más
Revista: Applied Sciences