Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Agriculture  /  Vol: 13 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

Real-Time Detection of Apple Leaf Diseases in Natural Scenes Based on YOLOv5

Huishan Li    
Lei Shi    
Siwen Fang and Fei Yin    

Resumen

Aiming at the problem of accurately locating and identifying multi-scale and differently shaped apple leaf diseases from a complex background in natural scenes, this study proposed an apple leaf disease detection method based on an improved YOLOv5s model. Firstly, the model utilized the bidirectional feature pyramid network (BiFPN) to achieve multi-scale feature fusion efficiently. Then, the transformer and convolutional block attention module (CBAM) attention mechanisms were added to reduce the interference from invalid background information, improving disease characteristics? expression ability and increasing the accuracy and recall of the model. Experimental results showed that the proposed BTC-YOLOv5s model (with a model size of 15.8M) can effectively detect four types of apple leaf diseases in natural scenes, with 84.3% mean average precision (mAP). With an octa-core CPU, the model could process 8.7 leaf images per second on average. Compared with classic detection models of SSD, Faster R-CNN, YOLOv4-tiny, and YOLOx, the mAP of the proposed model was increased by 12.74%, 48.84%, 24.44%, and 4.2%, respectively, and offered higher detection accuracy and faster detection speed. Furthermore, the proposed model demonstrated strong robustness and mAP exceeding 80% under strong noise conditions, such as exposure to bright lights, dim lights, and fuzzy images. In conclusion, the new BTC-YOLOv5s was found to be lightweight, accurate, and efficient, making it suitable for application on mobile devices. The proposed method could provide technical support for early intervention and treatment of apple leaf diseases.

 Artículos similares

       
 
Fang Wang, Xueliang Fu, Weijun Duan, Buyu Wang and Honghui Li    
The utilization of ear tags for identifying breeding pigs is a widely used technique in the field of animal production. Ear tag dropout can lead to the loss of pig identity information, resulting in missing data and ambiguity in production management and... ver más
Revista: Agriculture

 
Yu Zhang, Jiajun Niu, Zezhong Huang, Chunlei Pan, Yueju Xue and Fengxiao Tan    
An algorithm model based on computer vision is one of the critical technologies that are imperative for agriculture and forestry planting. In this paper, a vision algorithm model based on StyleGAN and improved YOLOv5s is proposed to detect sandalwood tre... ver más
Revista: Agriculture

 
Xingdong Sun, Yukai Zheng, Delin Wu and Yuhang Sui    
The key technology of automated apple harvesting is detecting apples quickly and accurately. The traditional detection methods of apple detection are often slow and inaccurate in unstructured orchards. Therefore, this article proposes an improved YOLOv5s... ver más
Revista: Agronomy

 
Hui Liu, Kun Li, Luyao Ma and Zhijun Meng    
Headland boundary identification and ranging are the key supporting technologies for the automatic driving of intelligent agricultural machinery, and they are also the basis for controlling operational behaviors such as autonomous turning and machine lif... ver más
Revista: Agriculture

 
Wolfgang Jarausch, Miriam Runne, Nora Schwind, Barbara Jarausch and Uwe Knauer    
Apple proliferation (AP) is an economically important disease in many apple-growing regions caused by ?Candidatus Phytoplasma mali? which is spread by migrating psyllid vectors on a regional scale. As infected trees in orchards are the only inoculum sour... ver más
Revista: Agronomy