Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Water  /  Vol: 14 Par: 20 (2022)  /  Artículo
ARTÍCULO
TITULO

Impacts of Spatial Interpolation Methods on Daily Streamflow Predictions with SWAT

Micah Lourdes Felix and Kwansue Jung    

Resumen

Precipitation is a significant input variable required in hydrological models such as the Soil & Water Assessment Tool (SWAT). The utilization of inaccurate precipitation data can result in the poor representation of the true hydrologic conditions of a catchment. SWAT utilizes the conventional nearest neighbor method in assigning weather parameters for each subbasin; a method inaccurate in representing spatial variations in precipitation over a large area, with sparse network of gauging stations. Therefore, this study aims to improve the spatial variation in precipitation data to improve daily streamflow simulation with SWAT, even pre-model calibration. The daily streamflow based on four interpolation methods, nearest neighbor (default), inverse-distance-weight, radial-basis function, and ordinary kriging, were evaluated to determine which interpolation method is best represents the precipitation at Yongdam watershed. Based on the results of this study, the application of spatial interpolation methods generally improved the performance of SWAT to simulate daily streamflow even pre-model calibration. In addition, no universal method can accurately represent the long-term spatial variation of precipitation at the Yongdam watershed. Instead, it was observed that the optimal selection of interpolation method at the Yongdam watershed is dependent on the long-term climatological conditions of the watershed. It was also observed that each interpolation method was optimal based on certain meteorological conditions at Yongdam watershed: nearest neighbor for cases when the occurrence probability of extreme precipitation is high during wet to moderately wet conditions; radial-basis function for cases when the number of dry days were high, during wet, severely dry, and extremely dry conditions; and ordinary kriging or inverse-weight-distance method for dry to moderately dry conditions. The methodology applied in this study improved the daily streamflow simulations at Yongdam watershed, even pre-model calibration of SWAT.

 Artículos similares

       
 
Yi Zhang, Zheng Tian, Jiacheng Du and Shibo Bi    
Assessment of the spatial distribution and accessibility of traditional villages is closely related to their development. However, the impacts of spatial heterogeneity on the accessibility of traditional villages remain largely unknown. A total of 644 na... ver más
Revista: Buildings

 
Jing Ran and Zorica Nedovic-Budic    
Accessible geospatial data are crucial for informed decision making and policy development in urban planning, environmental governance, and hazard mitigation. Spatial data infrastructures (SDIs) have been implemented to facilitate such data access. Howev... ver más

 
Chinh Lieou, Serge Jolicoeur, Thomas Guyondet, Stéphane O?Carroll and Tri Nguyen-Quang    
This study examines the hydrodynamic regimes in Shediac Bay, located in New Brunswick, Canada, with a focus on the breach in the Grande-Digue sand spit. The breach, which was developed in the mid-1980s, has raised concerns about its potential impacts on ... ver más

 
Zhaoyue Ma, Yong Zhao, Wenjing Zhao, Jiajun Feng, Yingying Liu, Jin Yeu Tsou and Yuanzhi Zhang    
This study on total suspended matter (TSM) in the Pearl River Estuary established a regression analysis model using Landsat 8 reflectance and measured TSM data, crucial for environmental management and engineering projects. High coefficients of determina... ver más

 
Long-Xiao Luo, Zhong-Yi Sun and Zheng-Hong Tan    
Climatic seasonality has lacked research attention in terms of global tropical forests, where it impacts vegetation productivity, biodiversity, and hydrological cycles. This study employs two methods?climatological anomalous accumulation (CAA) and potent... ver más
Revista: Water