Resumen
Circular diaphragm walls are increasingly being used in ultra-deep foundation pits due to their arch-shaped bearing system, which provides reasonable structural support. The trench walls that form the circular ground connection wall are typically double-angled in shape, and their stability analysis remains a challenge. In this paper, an instability model for double-angled trench walls based on 3D sliding body analysis is proposed. The objective of this paper is to determine the minimum amount of slurry needed to maintain the integrity of the trench wall. The results show that the center of symmetry on the inside of the wall is the most vulnerable to damage, followed by the inside corner, and then the center and corner on the outside. The consideration of sliding bodies in overall and local stability calculations for double-angled trench wall shapes can provide a reasonable stability assessment.