Resumen
Understanding the interfacial changes of wood during heat treatment can facilitate the improvement of the bonding and coating processes of heat-treated wood. Steam was used as the medium to modify Pinus massoniana wood through heat treatment at 160, 180, 200, and 220 °C. Changes to the surface characteristics after heat treatment were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and contact angle measurement. The results showed that: (1) hemicelluloses were the first to experience degradation at 160 °C, and this degradation was the most intense at 200 °C. The cellulose started experiencing obvious degradation at 200 °C, while there was less degradation of lignin at this temperature. (2) Oxygen-containing groups like hydroxyl and carbonyl were gradually reduced as temperature increased with deepened color and passivated surface. (3) Cellulose crystallinity presented a variable trend of increasing?decreasing?increasing. (4) Surface porosity and roughness of Pinus massoniana wood both increased after heat treatment. (5) The Pinus massoniana wood interface turned from hydrophilic to hydrophobic, and 180 °C was a turning point for the wettability of the Pinus massoniana wood interface.