Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

An Adversarial Single-Domain Generalization Network for Fault Diagnosis of Wind Turbine Gearboxes

Xinran Wang    
Chenyong Wang    
Hanlin Liu    
Cunyou Zhang    
Zhenqiang Fu    
Lin Ding    
Chenzhao Bai    
Hongpeng Zhang and Yi Wei    

Resumen

In deep learning-based fault diagnosis of the wind turbine gearbox, a commonly faced challenge is the domain shift caused by differing operational conditions. Traditional domain adaptation methods aim to learn transferable features from the source domain and apply them to the target data. However, such methods still require access to target domain data during the training process, which limits their applicability in real-time fault diagnosis. To address this issue, we introduce an adversarial single-domain generalization network (ASDGN). It relies solely on data from a single length of data acquisition in wind turbine fault diagnosis. This novel approach introduces a more flexible and efficient solution to the field of real-time fault diagnosis for wind turbines.

 Artículos similares

       
 
Hong Je-Gal, Seung-Jin Lee, Jeong-Hyun Yoon, Hyun-Suk Lee, Jung-Hee Yang and Sewon Kim    
Ensuring operational reliability in machinery requires accurate fault detection. While time-domain vibration pulsation signals are intuitive for pattern recognition and feature extraction, downsampling can reduce analytical complexity, but may result in ... ver más

 
Viacheslav Moskalenko, Vyacheslav Kharchenko, Alona Moskalenko and Borys Kuzikov    
Artificial intelligence systems are increasingly being used in industrial applications, security and military contexts, disaster response complexes, policing and justice practices, finance, and healthcare systems. However, disruptions to these systems ca... ver más
Revista: Algorithms

 
Yingying Liang, Peng Zhao and Yimeng Wang    
Deep learning has undergone significant progress for machinery fault diagnosis in the Industrial Internet of Things; however, it requires a substantial amount of labeled data. The lack of sufficient fault samples in practical applications remains a chall... ver más
Revista: Applied Sciences

 
Lanyong Zhang, Ziqi Zhang and Huimin Peng    
Synchronous generators with three phases are crucial components of modern integrated power systems in ships. These generators provide power for the entire operation of the vessel. Therefore, it is of paramount importance to diagnose short-circuit faults ... ver más

 
Yuansheng Dai, Yingyi Liu, Haoyu Song, Bing He, Haiwen Yuan and Boyang Zhang    
Classification tasks are pivotal across diverse applications, yet the burgeoning amount of data, coupled with complicating factors such as noise, exacerbates the challenge of classifying complex data. For algorithms that require a large amount of data, t... ver más
Revista: Applied Sciences