Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Coatings  /  Vol: 12 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Preparation of Mortar with Fe2O3 Nanoparticles for Radiation Shielding Application

M. I. Sayyed    
Nouf Almousa and Mohamed Elsafi    

Resumen

The current study aims to investigate the radiation shielding properties of mortar samples with Fe2O3 nanoparticles for radiation protection applications. For the reference mortar (free Fe2O3 nanoparticles) and the mortar with different concentrations of Fe2O3 nanoparticles, we experimentally measured the transmission factor (I/I0) for four different thicknesses of the prepared mortar. The I/I0 results indicated that the transmission of the photons through the mortars decreases with increases in the mortar?s thickness. The lowest TF was found for the mortar coded as MI-25 (contains 25 wt.% of Fe2O3 nanoparticles), which gives an indication about the development in the attenuation ability of the prepared mortar samples due to the addition of Fe2O3. Similarly, the linear attenuation coefficient (LAC) results showed an increasing trend with the addition of Fe2O3 nanoparticles for the four tested energies. These results confirm that increasing the ratio of Fe2O3 nanoparticles can lead to a remarkable improvement in the gamma ray shielding. We reported the half value layer (HVL) and we found that the HVL for the reference mortar at 0.06 MeV is 1.223 cm, while it changed from 1.19 to 1.074 cm for the mortar with 5 and 25 wt.% of Fe2O3 nanoparticles. The HVL results demonstrated that increasing the ratio of Fe2O3 nanoparticles can lead to a notable reduction in the HVL. The tenth value layer results proved that we can develop new mortars for radiation shielding applications by introducing more concentrations of Fe2O3 nanoparticles.

 Artículos similares

       
 
Masood Ur Rahman and Jing Li    
This paper presents experimental investigations on epoxy mortar produced using industrial wastes. In some recent studies, coal bottom ash and polyethylene terephthalate (PET) waste have been chosen as a filler to replace sand, and fly ash and silica fume... ver más
Revista: Applied Sciences

 
Abderrazak Barkat, Said Kenai, Belkasem Menadi, El-Hadj Kadri and Jamal Khatib    
Self-compacting concrete (SCC) production is a complex operation that requires finding a good combination and suitable dosages for its constituents. Several formulation methods have been developed to meet the workability requirements of SCC. Mortar sprea... ver más
Revista: Infrastructures

 
Endah Safitri, Ridan Adi Kusworo and Stefanus Adi Kristiawan    
Repair materials have been developed in this research by adding micro-synthetic fibers in cement-based mortar. In addition, accelerator is incorporated in the mortar to obtain high early strength of the repair materials. Their shrinkage behavior is of in... ver más
Revista: Infrastructures

 
Alberto Gracia, Francisco Javier Torrijo, Julio Garzón-Roca, Miguel Pérez-Picallo and Olegario Alonso-Pandavenes    
Sinkholes are a severe problem in urban areas located in karstic regions, especially where evaporitic rocks such as gypsum exist. Identification and proposal of mitigation measures are needed to reduce this geo-hazard effect on buildings and social urban... ver más
Revista: Applied Sciences

 
Teng Zhao, Hongxiu Du and Linhao Wang    
Experiments such as microbial activation culture, subculture selection, and fire damage repair of cement mortar specimens were conducted to investigate the repairing effect of Sporosarcina pasteurii as a repair agent for fire-damaged cracks in cement mor... ver más
Revista: Applied Sciences