Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 13 (2019)  /  Artículo
ARTÍCULO
TITULO

Numerical Modeling of the Melting Process in a Shell and Coil Tube Ice Storage System for Air-Conditioning Application

Seyed Soheil Mousavi Ajarostaghi    
Sébastien Poncet    
Kurosh Sedighi and Mojtaba Aghajani Delavar    

Resumen

Cold thermal energy storage, as a promising way of peak-shifting, can store energy by using cheap electricity during off-peak hours and regenerate electricity during peak times to reduce energy consumption. The most common form of cold storage air conditioning technology is ice on the coil energy storage system. Most of the previous studies so far about ice on coil cold storage system have been done experimentally. Numerical modeling appears as a valuable tool to first better understand the melting process then to improve the thermal performance of such systems by efficient design. Hence, this study aims to simulate the melting process of phase change materials in an internal melt ice-on-coil thermal storage system equipped with a coil tube. A three-dimensional numerical model is developed using ANSYS Fluent 18.2.0 to evaluate the dynamic characteristics of the melting process. The effects of operating parameters such as the inlet temperature and flowrate of the heat transfer fluid are investigated. Also, the effects of the coil geometrical parameters?including coil pitch, diameter, and height?are also considered. Results indicate that conduction is the dominant heat transfer mechanism at the initial stage of the melting process. Increasing either the inlet temperature or the flowrate shortens the melting time. It is also shown that the coil diameter shows the most pronounced effect on the melting rate compared to the other investigated geometrical parameters.

 Artículos similares

       
 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
Bohyeon Hwang, Kideok Do and Sungyeol Chang    
Constant changes occur in coastal areas over different timescales, requiring observation and modeling. Specifically, modeling morphological changes resulting from short-term events, such as storms, is of great importance in coastal management. Parameter ... ver más

 
Chia-Ho Wang, Hsiang-Lin Yu and Tsang-Jung Chang    
Currently, for modeling two-dimensional (2D) solute transport during pluvial and fluvial floods, the finite volume (FV) models are widely used because of their strong ability to handle steep concentration and velocity gradients from the flow advection te... ver más
Revista: Water

 
Khaqan Baluch, Heon-Joon Park, Kyuchan Ji and Sher Q. Baluch    
Whilst numerical modelling is commonly used for simulation to check the design of water conveyance, sluicing and spillway structure design, the numerical modelling has rarely been compared with the physical model tests. The objective of this research pre... ver más
Revista: Water