Resumen
Learning data feedback and analysis have been widely investigated in all aspects of education, especially for large scale remote learning scenario like Massive Open Online Courses (MOOCs) data analysis. On-site teaching and learning still remains the mainstream form for most teachers and students, and learning data analysis for such small scale scenario is rarely studied. In this work, we first develop a novel user interface to progressively collect students? feedback after each class of a course with WeChat mini program inspired by the evaluation mechanism of most popular shopping website. Collected data are then visualized to teachers and pre-processed. We also propose a novel artificial neural network model to conduct a progressive study performance prediction. These prediction results are reported to teachers for next-class and further teaching improvement. Experimental results show that the proposed neural network model outperforms other state-of-the-art machine learning methods and reaches a precision value of 74.05% on a 3-class classifying task at the end of the term.