Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

A Novel Approach for Improving Guitarists? Performance Using Motion Capture and Note Frequency Recognition

Walaa H. Elashmawi    
John Emad    
Ahmed Serag    
Karim Khaled    
Ahmed Yehia    
Karim Mohamed    
Hager Sobeah and Ahmed Ali    

Resumen

New guitarists face multiple problems when first starting out, and these mainly stem from a flood of information that they are presented with. Students also typically struggle with proper pitch frequency recognition and accurate left-hand motion. A variety of relevant solutions have been suggested in the existing literature; however, the majority have ultimately settled on two approaches. The first is finger motion capture, wherein researchers focus on extracting finger positions through analyzing images and videos. The second is note frequency recognition, wherein researchers focus on analyzing notes and frequencies from audio recordings. This paper proposes a novel hybrid solution that includes both finger motion capture and note frequency recognition in order to conduct a full assessment and give feedback on a guitarist?s performance. To classify hand positions, several classification algorithms are tested. The random forest algorithm obtained superior results, with an accuracy of 99% for overall hand movement and an average of 97.5% for the classification of each finger. Meanwhile, two algorithms were tested for note recognition, where the harmonic product spectrum (HPS) approach obtained the highest accuracy of 95%.

 Artículos similares

       
 
Jawaher Alghamdi, Yuqing Lin and Suhuai Luo    
The detection of fake news has emerged as a crucial area of research due to its potential impact on society. In this study, we propose a robust methodology for identifying fake news by leveraging diverse aspects of language representation and incorporati... ver más
Revista: Information

 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
With the rise of electric vehicles, autonomous driving, and valet parking technologies, considerable research has been dedicated to automatic charging solutions. While the current focus lies on charging robot design and the visual positioning of charging... ver más
Revista: Applied Sciences

 
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv    
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ... ver más
Revista: Applied Sciences

 
Chuanxiang Song, Seong-Yoon Shin and Kwang-Seong Shin    
This study introduces a novel approach named the Dynamic Feedback-Driven Learning Optimization Framework (DFDLOF), aimed at personalizing educational pathways through machine learning technology. Our findings reveal that this framework significantly enha... ver más
Revista: Applied Sciences

 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más