Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Buildings  /  Vol: 13 Par: 7 (2023)  /  Artículo
ARTÍCULO
TITULO

Experimental Study on the Flexural Behaviors of Prestressed Segmental Ultra?High?Performance Concrete Channels and Reinforced Conventional Concrete Deck Composite Girders

Yicong Chen    
Jialiang Zhou    
Fangzhi Guo    
Baochun Chen and Camillo Nuti    

Resumen

Flexural testing on two prestressed segmental ultra?high?performance concrete channels and reinforced conventional concrete deck composite girders (PSUC?RCCD) was carried out. One was made up of four segments with dry joints, and the other was formed of one channel beam without a dry joint. Both of them poured a conventional concrete deck slab on site. The mechanical behaviors of the girders, including the whole loading process, the crack pattern, and the failure mode were investigated and compared. The effect of the number of segments and the steel fiber volume fraction of UHPC on the bending behavior of the PSUC?RCCD girder was explored using the finite element method. This study showed that the loading process of semi-segmental and integral girders is similar; the whole loading process of the girders can be divided into the elastic phase, crack development, and the failure phase. The only notable difference between the two girders was the stage of crack development; specifically, after cracking, the stiffness of the semi-segmental girder reduced rapidly, while the ?bridging effect? of the steel fibers in the integrated girder caused a slow reduction in rigidity. The flexural cracks in the semi-segmental girder were significantly less than those in the integral girder in terms of the number of cracks, and were present only at the joints. The finite element analysis showed that the number of segments had little influence on the flexural capacity of the girders, but the girders with even numbers of segments cracked earlier than those with odd segments. Increasing the steel fiber volume fraction in UHPC (ultra?high?performance concrete) had a small effect on the cracking load of the semi-segmental girders but enhanced its ultimate flexural capacity. Based on this experiment, a calculated method for estimating the flexural capacity of semi-sectional girders was proposed. The calculated values were in good agreement with the experimental and finite element values. In the preliminary design, the flexural capacity of the semi-segmental section could be estimated by multiplying the flexural capacity of the integral section by a resistance factor of 0.95.

 Artículos similares

       
 
Hongjun Li, Baoyun Zhao, Zhengjun Hou and Hongyao Min    
The foundations of bridges and other tall buildings are often subjected to cyclic loads. Therefore, it is essential to investigate the mechanical properties of rock?concrete composite foundations under cyclic loads. In this paper, uniaxial cyclic loading... ver más
Revista: Buildings

 
Ayman El-Zohairy, Hani Salim, Hesham Shaaban and Mahmoud T. Nawar    
Fatigue in steel?concrete composite beams can result from cyclic loading, causing stress fluctuations that may lead to cumulative damage and eventual failure over an extended period. In this paper, the experimental findings from fatigue loading tests on ... ver más
Revista: Infrastructures

 
Xuhui He, Zhiyu Wang, Chao Li, Ce Gao, Yongfeng Liu, Changpeng Li and Bin Liu    
This paper presents an experimental study on the box girder of a low-tower cable-stayed railway bridge with a W-shaped section that consists of prestressed concrete diagonal braces. A 1:6 scale test model was designed and constructed for the experiment. ... ver más
Revista: Buildings

 
Di Liu, Songhui Li, Hengxuan Lun and Quanlei Wang    
This study investigates the impact of varying shell sand replacement rates (0%, 5%, 10%, 15%, 20%, 25%) on the properties of clay ceramsite lightweight aggregate concrete (CLC) through six experimental groups. Results indicate that a 5% replacement rate ... ver más
Revista: Buildings

 
Runqi Guo, Haiying Zhang, Kezheng Chen, Yang Song, Hongxia Li, Lin Ding and Yanjie Liu    
In order to improve the seismic performance of reinforced concrete (RC) columns, a reinforcement technology using prestressed steel wire ropes embedded in polyurethane cement composite material is proposed. Four concrete columns reinforced with different... ver más
Revista: Buildings