Resumen
Fouling organisms reduce a ship?s fuel efficiency and disturb the ecosystem. Therefore, the International Maritime Organization (IMO) and many nations have enacted laws that mandate periodic hull cleaning for removing fouling organisms. However, cleaning niche areas of the ship hull is extremely difficult. Due to their complex shape, applying antifouling paint and cleaning with hull cleaning robots is difficult, but about 80% of fouling organisms are concentrated in the niche areas. To resolve this issue, this research proposes the use of an autonomous cleaning robot with a hydraulic polyarticular robot arm to clean niche areas of the ship hull. This robot can approach niche areas of the ship hull with complex shapes using its polyarticular arm. It was designed to be able to scan the cleaning area, establish a cleaning plan, and clean accordingly. This robot autonomously cleaned a propeller blade, which is a typical niche area of the ship hull, to verify the applicability of this system. The experiment results show that approximately 80% of the biofouling was removed from the hull crevices and 81% of the cleaned biofouling was recovered.