Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

An Event-Based Inventory Approach in Landslide Hazard Assessment: The Case of the Skolis Mountain, Northwest Peloponnese, Greece

Aspasia Litoseliti    
Ioannis K. Koukouvelas    
Konstantinos G. Nikolakopoulos and Vasiliki Zygouri    

Resumen

Assessment of landslide hazard across mountains is imperative for public safety. Pre- and post-earthquake landslide mapping envisage that landslides show significant size changes during earthquake activity. One of the purposes of earthquake-induced landslide investigation is to determine the landslide state and geometry and draw conclusions on their mobility. This study was based on remote sensing data that covered 72 years, and focused on the west slopes of the Skolis Mountains, in the northwest Peloponnese. On 8 June 2008, during the strong Movri Mountain earthquake (Mw = 6.4), we mapped the extremely abundant landslide occurrence. Historical seismicity and remote sensing data indicate that the Skolis Mountain west slope is repeatedly affected by landslides. The impact of the earthquakes was based on the estimation of Arias intensity in the study area. We recognized that 89 landslides developed over the last 72 years. These landslides increased their width (W), called herein as inflation or their length (L), termed as enlargement. Length and width changes were used to describe their aspect ratio (L/W). Based on the aspect ratio, the 89 landslides were classified into three types: I, J, and ?. Taluses, developed at the base of the slope and belonging to the J- and ?-landslide types, are supplied by narrow or irregular channels. During the earthquakes, the landslide channels migrated upward and downward, outlining the mobility of the earthquake-induced landslides. Landslide mobility was defined by the reach angle. The reach angle is the arctangent of the landslide?s height to length ratio. Furthermore, we analyzed the present slope stability across the Skolis Mountain by using the landslide density (LD), landslide area percentage (LAP), and landslide frequency (LF). All these parameters were used to evaluate the spatial and temporal landslide distribution and evolution with the earthquake activity. These results can be considered as a powerful tool for earthquake-induced landslide disaster mitigation

 Artículos similares

       
 
Juan Ma, Qiang Yang, Mingzhi Zhang, Yao Chen, Wenyi Zhao, Chengyu Ouyang and Dongping Ming    
Accurately predicting landslide deformation based on monitoring data is key to successful early warning of landslide disasters. Landslide displacement?time curves offer an intuitive reflection of the landslide motion process and deformation predictions o... ver más
Revista: Water

 
Huajun Meng, Jihuan Wu, Chunshan Zhang and Kungang Wu    
Mine landslides are geological disasters with the highest frequency and cause the greatest harm worldwide. This typically causes significant casualties and damage to property. The study of the formation mechanisms and kinematic processes of mine landslid... ver más
Revista: Water

 
Yunkai Ruan, Ranran Huo, Jinzi Chen, Weicheng Liu, Xin Zhou, Tanhua Wang, Mingzhi Hou and Wei Huang    
Combined with visible light remote sensing technology and InSAR technology, this study employed the fundamental principles of the frequency ratio model, information content model, and analytic hierarchy process to assess the susceptibility of the study a... ver más
Revista: Water

 
Jingyun Gui, Ignacio Pérez-Rey, Miao Yao, Fasuo Zhao and Wei Chen    
Spatial landslide susceptibility assessment is a fundamental part of landslide risk management and land-use planning. The main objective of this study is to apply the Credal Decision Tree (CDT), adaptive boosting Credal Decision Tree (AdaCDT), and random... ver más
Revista: Water

 
Mohamed Wahba, Mustafa El-Rawy, Nassir Al-Arifi and Mahmoud M. Mansour    
Landslides and flash floods are significant natural hazards with substantial risks to human settlements and the environment, and understanding their interconnection is vital. This research investigates the hazards of landslides and floods in two adopted ... ver más
Revista: Water