Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Hydrology  /  Vol: 10 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

A Novel Multipurpose Self-Irrigated Green Roof with Innovative Drainage Layer

Behrouz Pirouz    
Stefania Anna Palermo    
Gianfranco Becciu    
Umberto Sanfilippo    
Hana Javadi Nejad    
Patrizia Piro and Michele Turco    

Resumen

Climate change is a significant problem that many countries are currently facing, and green roofs (GRs) are one of the suitable choices to confront it and decrease its impacts. The advantages of GRs are numerous, such as stormwater management, thermal need reduction, runoff quality, and life quality improvement. However, there are some limitations, including the weight, limits in water retention, irrigation in the drought period, suitability of harvested water for building usages, installation on sloped roofs, and high cost. Therefore, developing a novel system and design for GRs with higher efficiency and fewer negative points seems necessary and is the main scope of this research. In this regard, a novel multipurpose self-irrigated green roof with an innovative drainage layer combined with specific multilayer filters has been developed. The application of the proposed system in terms of water retention capacity, water storage volume, runoff treatment performance, irrigation system, drainage layer, application of the harvested water for domestic purposes, and some other aspects has been analyzed and compared with the conventional systems with a focus on extensive green roofs. The results demonstrate that this novel green roof would have many advantages including less weight due to the replacement of the gravel drainage layer with a pipeline network for water storage, higher water retention capacity due to the specific design, higher impacts on runoff treatment due to the existence of multilayer filters that can be changed periodically, easier installation on flat and sloped roofs, the possibility of using the collected rainfall for domestic use, and fewer irrigation water demands due to the sub-surface self-irrigation system.

 Artículos similares

       
 
Daxue Kan, Wenqing Yao, Lianju Lyu and Weichiao Huang    
This study aims to improve the level of water ecological civilization (WEC) in the urbanization process based on the data of prefecture-level cities in Jiangxi, China, from 2011 to 2020. This paper applies spatial analysis methods such as the natural fra... ver más
Revista: Water

 
Munir Bhatti, Amanjot Singh, Edward McBean, Sadharsh Vijayakumar, Alex Fitzgerald, Jan Siwierski and Lorna Murison    
Cyanobacteria, also known as blue-green algae, are photosynthetic bacteria that play a crucial role in aquatic ecosystems and are susceptible to changes in temperature. Hence, as global temperatures rise due to climate change, some Cyanobacterial species... ver más
Revista: Water

 
Gricelda Herrera-Franco, Lady Bravo-Montero, Jhon Caicedo-Potosí and Paúl Carrión-Mero    
The excessive use of energy from fossil fuels, which corresponds to population, industrialisation, and unsustainable economic growth, is the cause of carbon dioxide production and climate change. The Water?Energy?Food (WEF) nexus is an applicable concept... ver más
Revista: Water

 
Yuyang Liu, Bo Feng and Yu Yao    
With the intensification of water pollution problems worldwide, constructed wetlands, as a green, efficient, and energy-saving wastewater treatment technology, have gradually attracted the wide attention of scholars at home and abroad. In order to better... ver más
Revista: Water

 
Honglong Ma, Huawei Li, Jinhu Zheng, Wei Wei, Shaohua He, Xiaopeng Tian, Xiaohui Li and Feng Liu    
The application range of rubber-recycled aggregate concrete (RRAC), a new type of green building material, is currently limited due to performance defects, including low hardness, high water absorption, and poor adhesion. To expand its application in rei... ver más
Revista: Buildings