Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

A Lightweight Model for 3D Point Cloud Object Detection

Ziyi Li    
Yang Li    
Yanping Wang    
Guangda Xie    
Hongquan Qu and Zhuoyang Lyu    

Resumen

With the rapid development of deep learning, more and more complex models are applied to 3D point cloud object detection to improve accuracy. In general, the more complex the model, the better the performance and the greater the computational resource consumption it has. However, complex models are incompatible for deployment on edge devices with restricted memory, so accurate and efficient 3D point cloud object detection processing is necessary. Recently, a lightweight model design has been proposed as one type of effective model compression that aims to design more efficient network computing methods. In this paper, a lightweight 3D point cloud object detection network architecture is proposed. The core innovation of the proposal consists of a lightweight 3D sparse convolution layer module (LW-Sconv module) and knowledge distillation loss. Firstly, in the LW-Sconv module, factorized convolution and group convolution are applied to the standard 3D sparse convolution layer. As the basic component of the lightweight 3D point cloud object detection network proposed in this paper, the LW-Sconv module greatly reduces the complexity of the network. Then, the knowledge distillation loss is used to guide the training of the lightweight network proposed in this paper to further improve the detection accuracy. Finally, extensive experiments are performed to verify the algorithm proposed in this paper. Compared with the baseline model, the proposed model can reduce the FLOPs and parameters by 3.7 times and 7.9 times, respectively. The lightweight model trained with knowledge distillation loss achieves comparable accuracy to the baseline. Experiments show that the proposed method greatly reduces the model complexity while ensuring detection accuracy.

 Artículos similares

       
 
Fangyuan Li, Zhenwei Guo, Peifeng Wu and Yunxuan Cui    
This study proposes two curves that depict the vehicle?bridge contact force in a novel transportation system named AERORail, which is a lightweight cable-supported structure in which the rails and the prestressed cable form the load bearing system. Based... ver más
Revista: Applied Sciences

 
Burhan Ul Islam Khan, Khang Wen Goh, Mohammad Shuaib Mir, Nur Fatin Liyana Mohd Rosely, Aabid Ahmad Mir and Mesith Chaimanee    
As the Internet of Things (IoT) continues to revolutionize value-added services, its conventional architecture exhibits persistent scalability and security vulnerabilities, jeopardizing the trustworthiness of IoT-based services. These architectural limit... ver más
Revista: Information

 
Baobao Liu, Heying Wang, Zifan Cao, Yu Wang, Lu Tao, Jingjing Yang and Kaibing Zhang    
Defect detection holds significant importance in improving the overall quality of fabric manufacturing. To improve the effectiveness and accuracy of fabric defect detection, we propose the PRC-Light YOLO model for fabric defect detection and establish a ... ver más
Revista: Applied Sciences

 
Hao Liu, Bo Yang and Zhiwen Yu    
Multimodal sarcasm detection is a developing research field in social Internet of Things, which is the foundation of artificial intelligence and human psychology research. Sarcastic comments issued on social media often imply people?s real attitudes towa... ver más
Revista: Applied Sciences

 
Luis A. Fletscher, Alejandra Zuleta, Alexander Galvis, David Quintero, Juan Felipe Botero and Natalia Gaviria    
While 5G has become a reality in several places around the world, some countries are still in the process of assigning frequency bands and deploying networks. In this context, there is a significant opportunity to explore new market models for the manage... ver más
Revista: Information