Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 4 (2022)  /  Artículo
ARTÍCULO
TITULO

Study of the Algorithm for Wind Shear Detection with Lidar Based on Shear Intensity Factor

Shijun Zhao and Yulong Shan    

Resumen

Low-level wind shear is a vital weather process affecting aircraft safety while taking off and landing and is known as the ?aircraft killer? in the aviation industry. As a result, effective monitoring and warning are required. Several ramps detection algorithms for low-level wind shear based on glide path scanning of lidar have been developed, including double and simple ramp detection, with the ramp length extension and contraction strategies corresponding to the algorithm. However, current algorithms must be improved to determine the maximum shear value and location. In this paper, a new efficient algorithm based on the shear intensity factor value is presented, in which wind speed changes and distance are both considered when calculating wind shear. Simultaneously, the effectiveness of the improved algorithm has been validated through numerical simulation experiments. Results reveal that the improved algorithm can determine the maximum intensity value and wind shear location more accurately than the traditional algorithm. In addition, the new algorithm improved the detection ability of lidar for weak wind shear.

 Artículos similares

       
 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Kre?imir Nincevic, Thierry Guillet, Omar Al Mansouri and Roman Wan-Wendner    
This contribution summarizes the largest available literature data collection on tensile and shear loaded anchor tests, obtained in two independent studies and performed by two different research groups. It was the objective of the two studies to investi... ver más
Revista: Applied Sciences

 
Jiarun Tang and Dongxia Chen    
Granite residual soil (GRS) exhibits favorable engineering properties in its natural state. However, a hot and rainy climate, combined with vibrations generated during mechanical construction, can cause a notable decrease in its strength. In this study, ... ver más
Revista: Applied Sciences

 
Qingmeng Yuan, Liang Kong, Qianyong Liang, Jinqiang Liang, Lin Yang, Yifei Dong, Zhigang Wang and Xuemin Wu    
Clarifying the mechanical characteristics of gas hydrate-bearing sediments (GHBS) from a mechanical perspective is crucial for ensuring the long-term, safe, and efficient extraction of natural gas hydrates. In this study, seabed soft clay from the northe... ver más

 
Zhongao Yang, Xiaohua Ding, Xin Liu, Abdoul Wahab, Zhongchen Ao, Ya Tian, Van Son Bang, Zhaoxi Long, Guodong Li and Penglin Ma    
The instability of geological slopes in mining environments poses a significant challenge to the safety and efficiency of operations. Waste Dump#2 at the Ziluoyi Iron Mine in China is a notable case study that highlights the challenges associated with si... ver más
Revista: Water