Resumen
The integrated recognition of spatio-temporal characteristics (e.g., speed, interaction with surrounding areas, and driving forces) of urbanization facilitates regional comprehensive development. In this study, a large-scale data-driven approach was formed for exploring the township urbanization process. The approach integrated logistic models to quantify urbanization speed, partial triadic analysis to reveal dynamic relationships between rural population migration and urbanization, and random forest analysis to identify the response of urbanization to spatial driving forces. A typical subtropical town was chosen to verify the approach by quantifying the spatio-temporal process of township urbanization from 1933 to 2012. The results showed that (i) urbanization speed was well reflected by the changes of time-course areas of urban cores fitted by a four-parameter logistic equation (R2 = 0.95?1.00, p < 0.001), and the relatively fast and steady developing periods were also successfully predicted, respectively; (ii) the spatio-temporal sprawl of urban cores and their interactions with the surrounding rural residential areas were well revealed and implied that the town experienced different historically aggregating and splitting trajectories; and (iii) the key drivers (township merger, elevation and distance to roads, as well as population migration) were identified in the spatial sprawl of urban cores. Our findings proved that a comprehensive approach is powerful for quantifying the spatio-temporal characteristics of the urbanization process at the township level and emphasized the importance of applying long-term historical data when researching the urbanization process.