Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 21 (2022)  /  Artículo
ARTÍCULO
TITULO

Co-Operative Binary Bat Optimizer with Rough Set Reducts for Text Feature Selection

Aisha Adel    
Nazlia Omar    
Salwani Abdullah and Adel Al-Shabi    

Resumen

The process of eliminating irrelevant, redundant and noisy features while trying to maintain less information loss is known as a feature selection problem. Given the vast amount of the textual data generated and shared on the internet such as news reports, articles, tweets and product reviews, the need for an effective text-feature selection method becomes increasingly important. Recently, stochastic optimization algorithms have been adopted to tackle this problem. However, the efficiency of these methods is decreased when tackling high-dimensional problems. This decrease could be attributed to premature convergence where the population diversity is not well maintained. As an innovative attempt, a cooperative Binary Bat Algorithm (BBACO) is proposed in this work to select the optimal text feature subset for classification purposes. The proposed BBACO uses a new mechanism to control the population?s diversity during the optimization process and to improve the performance of BBA-based text-feature selection method. This is achieved by dividing the dimension of the problem into several parts and optimizing each of them in a separate sub-population. To evaluate the generality and capability of the proposed method, three classifiers and two standard benchmark datasets in English, two in Malay and one in Arabic were used. The results show that the proposed method steadily improves the classification performance in comparison with other well-known feature selection methods. The improvement is obtained for all of the English, Malay and Arabic datasets which indicates the generality of the proposed method in terms of the dataset language.

 Artículos similares

       
 
Shuang Che, Yan Chen, Longda Wang and Chuanfang Xu    
This work discusses the electric vehicle (EV) ordered charging planning (OCP) optimization problem. To address this issue, an improved dual-population genetic moth?flame optimization (IDPGMFO) is proposed. Specifically, to obtain an appreciative solution... ver más
Revista: Algorithms

 
Bowen Xing, Xiao Wang and Zhenchong Liu    
The path planning strategy of deep-sea mining vehicles is an important factor affecting the efficiency of deep-sea mining missions. However, the current traditional path planning algorithms suffer from hose entanglement problems and small coverage in the... ver más

 
Minghui Shao, Biao Wu, Yan Li and Xiaoli Jiang    
This paper focuses on optimizing the deployment plan for standby points of professional rescue vessels based on the data of maritime incidents in the Beihai area of China. The primary objective is to achieve multi-level and multiple coverage of the juris... ver más

 
Jian Wu, Ziyu Wang, Xiaochun Bai and Nana Duan    
The risk level of the NIMBY (Not In My Back Yard) phenomenon is crucial for the safety and economy of transmission and transformation projects which is rarely studied, especially for site selection and the construction of transmission lines and substatio... ver más
Revista: Applied Sciences

 
Vera Afreixo, Ana Helena Tavares, Vera Enes, Miguel Pinheiro, Leonor Rodrigues and Gabriela Moura    
In this work, we aimed to establish a stable and accurate procedure with which to perform feature selection in datasets with a much higher number of predictors than individuals, as in genome-wide association studies. Due to the instability of feature sel... ver más
Revista: Applied Sciences