Resumen
In this paper, three different flash floods episodes were analyzed, which occurred in October 2006, February 2010, and June 2018 in the Chalkidiki peninsula (North Greece). The Soil Conservation Service (SCS) model and a revised assessment of the CN parameter were applied to estimate the flood hydrographs, and Hydrologic Engineering Center?s-River Analysis System (HEC-RAS) software was used for the flood simulations. Initially, hydrological and hydraulic models were calibrated at Vatonias watershed (240.90 km2, North Greece), where three rain gauges and one water level station are located. Vatonias is located very close to the Stavros ungauged watersheds and presents similar geomorphology and land use conditions. The effectiveness and accuracy of the methodology were validated using post-flash-flood measurements. The root mean square error goodness of fit was used to compare the observed and simulated flood depths. Critical success index was calculated for the assessment of the accuracy of observed and modeled flooded areas. The results showed that the dense forest vegetation was not capable of preventing the flash flood generation or reducing the peak discharge, especially in small watersheds characterized by short concentration times. The main cause of flash flood generation was the human interference that influenced the hydraulic characteristics of streams and floodplains. The revised assessment of the CN parameter enhanced the estimation and spatial distribution of CN over the entire watershed. The results revealed that the proposed methodology could be a very useful tool to researchers and policy makers for flood risk assessment of higher accuracy and effectiveness in ungauged Mediterranean watersheds.