Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 5 (2020)  /  Artículo
ARTÍCULO
TITULO

A Novel Approach for Software Defect prediction Based on the Power Law Function

Junhua Ren and Feng Liu    

Resumen

Power law describes a common behavior in which a few factors play decisive roles in one thing. Most software defects occur in very few instances. In this study, we proposed a novel approach that adopts power law function characteristics for software defect prediction. The first step in this approach is to establish the power law function of the majority of metrics in a software system. Following this, the power law function?s maximal curvature value is applied as the threshold value for determining higher metric values. Furthermore, the total number of higher metric values is counted in each instance. Finally, the statistical data are clustered into different categories as defect-free and defect-prone instances. Case studies and a comparison were conducted based on twelve public datasets of Promise, SoftLab, and ReLink by using five different algorithms. The results indicate that the precision, recall, and F-measure values obtained by the proposed approach are the most optimal among the tested five algorithms, the average values of recall and F-measure were improved by 14.3% and 6.0%, respectively. Furthermore, the complexity of the proposed approach based on the power law function is O(2n)" role="presentation">??(2??)O(2n) O ( 2 n ) , which is the lowest among the tested five algorithms. The proposed approach is thus demonstrated to be feasible and highly efficient at software defect prediction with unlabeled datasets.

 Artículos similares

       
 
Jawaher Alghamdi, Yuqing Lin and Suhuai Luo    
The detection of fake news has emerged as a crucial area of research due to its potential impact on society. In this study, we propose a robust methodology for identifying fake news by leveraging diverse aspects of language representation and incorporati... ver más
Revista: Information

 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
With the rise of electric vehicles, autonomous driving, and valet parking technologies, considerable research has been dedicated to automatic charging solutions. While the current focus lies on charging robot design and the visual positioning of charging... ver más
Revista: Applied Sciences

 
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv    
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ... ver más
Revista: Applied Sciences

 
Chuanxiang Song, Seong-Yoon Shin and Kwang-Seong Shin    
This study introduces a novel approach named the Dynamic Feedback-Driven Learning Optimization Framework (DFDLOF), aimed at personalizing educational pathways through machine learning technology. Our findings reveal that this framework significantly enha... ver más
Revista: Applied Sciences

 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más